refactor: move zabbix modules

This commit is contained in:
Alexander Zobnin
2018-03-17 15:49:34 +03:00
parent 498e9f843c
commit 24e10e885d
43 changed files with 3437 additions and 3266 deletions

View File

@@ -1,51 +1,56 @@
import _ from 'lodash';
import dataProcessor from '../dataProcessor';
'use strict';
describe('dataProcessor', () => {
let ctx = {};
System.register(['lodash', '../dataProcessor'], function (_export, _context) {
"use strict";
beforeEach(() => {
ctx.datapoints = [
[[10, 1500000000000], [2, 1500000001000], [7, 1500000002000], [1, 1500000003000]],
[[9, 1500000000000], [3, 1500000001000], [4, 1500000002000], [8, 1500000003000]],
];
});
var _, dataProcessor;
describe('When apply groupBy() functions', () => {
it('should return series average', () => {
let aggregateBy = dataProcessor.metricFunctions['groupBy'];
const avg2s = _.map(ctx.datapoints, (dp) => aggregateBy('2s', 'avg', dp));
expect(avg2s).toEqual([
[[6, 1500000000000], [4, 1500000002000]],
[[6, 1500000000000], [6, 1500000002000]],
]);
return {
setters: [function (_lodash) {
_ = _lodash.default;
}, function (_dataProcessor) {
dataProcessor = _dataProcessor.default;
}],
execute: function () {
const avg10s = _.map(ctx.datapoints, (dp) => aggregateBy('10s', 'avg', dp));
expect(avg10s).toEqual([
[[5, 1500000000000]],
[[6, 1500000000000]],
]);
describe('dataProcessor', function () {
var ctx = {};
// not aligned
const dp = [[10, 1500000001000], [2, 1500000002000], [7, 1500000003000], [1, 1500000004000]];
expect(aggregateBy('2s', 'avg', dp)).toEqual([
[10, 1500000000000], [4.5, 1500000002000], [1, 1500000004000]
]);
});
});
beforeEach(function () {
ctx.datapoints = [[[10, 1500000000000], [2, 1500000001000], [7, 1500000002000], [1, 1500000003000]], [[9, 1500000000000], [3, 1500000001000], [4, 1500000002000], [8, 1500000003000]]];
});
describe('When apply aggregateBy() functions', () => {
it('should return series average', () => {
let aggregateBy = dataProcessor.metricFunctions['aggregateBy'];
const avg1s = aggregateBy('1s', 'avg', ctx.datapoints);
expect(avg1s).toEqual([
[9.5, 1500000000000], [2.5, 1500000001000], [5.5, 1500000002000], [4.5, 1500000003000]
]);
describe('When apply groupBy() functions', function () {
it('should return series average', function () {
var aggregateBy = dataProcessor.metricFunctions['groupBy'];
var avg2s = _.map(ctx.datapoints, function (dp) {
return aggregateBy('2s', 'avg', dp);
});
expect(avg2s).toEqual([[[6, 1500000000000], [4, 1500000002000]], [[6, 1500000000000], [6, 1500000002000]]]);
const avg10s = aggregateBy('10s', 'avg', ctx.datapoints);
expect(avg10s).toEqual([
[5.5, 1500000000000]
]);
});
});
var avg10s = _.map(ctx.datapoints, function (dp) {
return aggregateBy('10s', 'avg', dp);
});
expect(avg10s).toEqual([[[5, 1500000000000]], [[6, 1500000000000]]]);
// not aligned
var dp = [[10, 1500000001000], [2, 1500000002000], [7, 1500000003000], [1, 1500000004000]];
expect(aggregateBy('2s', 'avg', dp)).toEqual([[10, 1500000000000], [4.5, 1500000002000], [1, 1500000004000]]);
});
});
describe('When apply aggregateBy() functions', function () {
it('should return series average', function () {
var aggregateBy = dataProcessor.metricFunctions['aggregateBy'];
var avg1s = aggregateBy('1s', 'avg', ctx.datapoints);
expect(avg1s).toEqual([[9.5, 1500000000000], [2.5, 1500000001000], [5.5, 1500000002000], [4.5, 1500000003000]]);
var avg10s = aggregateBy('10s', 'avg', ctx.datapoints);
expect(avg10s).toEqual([[5.5, 1500000000000]]);
});
});
});
}
};
});
//# sourceMappingURL=dataProcessor.spec.js.map