move timeseries processing into 'timeseries' module
This commit is contained in:
248
dist/datasource-zabbix/dataProcessor.js
vendored
248
dist/datasource-zabbix/dataProcessor.js
vendored
@@ -1,118 +1,11 @@
|
||||
'use strict';
|
||||
|
||||
System.register(['lodash', './utils'], function (_export, _context) {
|
||||
System.register(['lodash', './utils', './timeseries'], function (_export, _context) {
|
||||
"use strict";
|
||||
|
||||
var _, utils, metricFunctions, aggregationFunctions;
|
||||
var _, utils, ts, downsampleSeries, groupBy, sumSeries, scale, delta, SUM, COUNT, AVERAGE, MIN, MAX, MEDIAN, metricFunctions, aggregationFunctions;
|
||||
|
||||
/**
|
||||
* Downsample datapoints series
|
||||
*/
|
||||
function downsampleSeries(datapoints, time_to, ms_interval, func) {
|
||||
var downsampledSeries = [];
|
||||
var timeWindow = {
|
||||
from: time_to * 1000 - ms_interval,
|
||||
to: time_to * 1000
|
||||
};
|
||||
|
||||
var points_sum = 0;
|
||||
var points_num = 0;
|
||||
var value_avg = 0;
|
||||
var frame = [];
|
||||
|
||||
for (var i = datapoints.length - 1; i >= 0; i -= 1) {
|
||||
if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) {
|
||||
points_sum += datapoints[i][0];
|
||||
points_num++;
|
||||
frame.push(datapoints[i][0]);
|
||||
} else {
|
||||
value_avg = points_num ? points_sum / points_num : 0;
|
||||
|
||||
if (func === "max") {
|
||||
downsampledSeries.push([_.max(frame), timeWindow.to]);
|
||||
} else if (func === "min") {
|
||||
downsampledSeries.push([_.min(frame), timeWindow.to]);
|
||||
}
|
||||
|
||||
// avg by default
|
||||
else {
|
||||
downsampledSeries.push([value_avg, timeWindow.to]);
|
||||
}
|
||||
|
||||
// Shift time window
|
||||
timeWindow.to = timeWindow.from;
|
||||
timeWindow.from -= ms_interval;
|
||||
|
||||
points_sum = 0;
|
||||
points_num = 0;
|
||||
frame = [];
|
||||
|
||||
// Process point again
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return downsampledSeries.reverse();
|
||||
}
|
||||
|
||||
/**
|
||||
* Group points by given time interval
|
||||
* datapoints: [[<value>, <unixtime>], ...]
|
||||
*/
|
||||
function groupBy(interval, groupByCallback, datapoints) {
|
||||
var ms_interval = utils.parseInterval(interval);
|
||||
|
||||
// Calculate frame timestamps
|
||||
var frames = _.groupBy(datapoints, function (point) {
|
||||
// Calculate time for group of points
|
||||
return Math.floor(point[1] / ms_interval) * ms_interval;
|
||||
});
|
||||
|
||||
// frame: { '<unixtime>': [[<value>, <unixtime>], ...] }
|
||||
// return [{ '<unixtime>': <value> }, { '<unixtime>': <value> }, ...]
|
||||
var grouped = _.mapValues(frames, function (frame) {
|
||||
var points = _.map(frame, function (point) {
|
||||
return point[0];
|
||||
});
|
||||
return groupByCallback(points);
|
||||
});
|
||||
|
||||
// Convert points to Grafana format
|
||||
return sortByTime(_.map(grouped, function (value, timestamp) {
|
||||
return [Number(value), Number(timestamp)];
|
||||
}));
|
||||
}function sumSeries(timeseries) {
|
||||
|
||||
// Calculate new points for interpolation
|
||||
var new_timestamps = _.uniq(_.map(_.flatten(timeseries, true), function (point) {
|
||||
return point[1];
|
||||
}));
|
||||
new_timestamps = _.sortBy(new_timestamps);
|
||||
|
||||
var interpolated_timeseries = _.map(timeseries, function (series) {
|
||||
var timestamps = _.map(series, function (point) {
|
||||
return point[1];
|
||||
});
|
||||
var new_points = _.map(_.difference(new_timestamps, timestamps), function (timestamp) {
|
||||
return [null, timestamp];
|
||||
});
|
||||
var new_series = series.concat(new_points);
|
||||
return sortByTime(new_series);
|
||||
});
|
||||
|
||||
_.each(interpolated_timeseries, interpolateSeries);
|
||||
|
||||
var new_timeseries = [];
|
||||
var sum;
|
||||
for (var i = new_timestamps.length - 1; i >= 0; i--) {
|
||||
sum = 0;
|
||||
for (var j = interpolated_timeseries.length - 1; j >= 0; j--) {
|
||||
sum += interpolated_timeseries[j][i][0];
|
||||
}
|
||||
new_timeseries.push([sum, new_timestamps[i]]);
|
||||
}
|
||||
|
||||
return sortByTime(new_timeseries);
|
||||
}function limit(order, n, orderByFunc, timeseries) {
|
||||
function limit(order, n, orderByFunc, timeseries) {
|
||||
var orderByCallback = aggregationFunctions[orderByFunc];
|
||||
var sortByIteratee = function sortByIteratee(ts) {
|
||||
var values = _.map(ts.datapoints, function (point) {
|
||||
@@ -126,31 +19,14 @@ System.register(['lodash', './utils'], function (_export, _context) {
|
||||
} else {
|
||||
return sortedTimeseries.slice(-n);
|
||||
}
|
||||
}function SUM(values) {
|
||||
var sum = 0;
|
||||
_.each(values, function (value) {
|
||||
sum += value;
|
||||
});
|
||||
return sum;
|
||||
}function COUNT(values) {
|
||||
return values.length;
|
||||
}function AVERAGE(values) {
|
||||
var sum = 0;
|
||||
_.each(values, function (value) {
|
||||
sum += value;
|
||||
});
|
||||
return sum / values.length;
|
||||
}function MIN(values) {
|
||||
return _.min(values);
|
||||
}function MAX(values) {
|
||||
return _.max(values);
|
||||
}function MEDIAN(values) {
|
||||
var sorted = _.sortBy(values);
|
||||
return sorted[Math.floor(sorted.length / 2)];
|
||||
}function setAlias(alias, timeseries) {
|
||||
}
|
||||
|
||||
function setAlias(alias, timeseries) {
|
||||
timeseries.target = alias;
|
||||
return timeseries;
|
||||
}function replaceAlias(regexp, newAlias, timeseries) {
|
||||
}
|
||||
|
||||
function replaceAlias(regexp, newAlias, timeseries) {
|
||||
var pattern = void 0;
|
||||
if (utils.isRegex(regexp)) {
|
||||
pattern = utils.buildRegex(regexp);
|
||||
@@ -161,105 +37,71 @@ System.register(['lodash', './utils'], function (_export, _context) {
|
||||
var alias = timeseries.target.replace(pattern, newAlias);
|
||||
timeseries.target = alias;
|
||||
return timeseries;
|
||||
}function setAliasByRegex(alias, timeseries) {
|
||||
}
|
||||
|
||||
function setAliasByRegex(alias, timeseries) {
|
||||
timeseries.target = extractText(timeseries.target, alias);
|
||||
return timeseries;
|
||||
}function extractText(str, pattern) {
|
||||
}
|
||||
|
||||
function extractText(str, pattern) {
|
||||
var extractPattern = new RegExp(pattern);
|
||||
var extractedValue = extractPattern.exec(str);
|
||||
extractedValue = extractedValue[0];
|
||||
return extractedValue;
|
||||
}function scale(factor, datapoints) {
|
||||
return _.map(datapoints, function (point) {
|
||||
return [point[0] * factor, point[1]];
|
||||
});
|
||||
}function delta(datapoints) {
|
||||
var newSeries = [];
|
||||
var deltaValue = void 0;
|
||||
for (var i = 1; i < datapoints.length; i++) {
|
||||
deltaValue = datapoints[i][0] - datapoints[i - 1][0];
|
||||
newSeries.push([deltaValue, datapoints[i][1]]);
|
||||
}
|
||||
return newSeries;
|
||||
}function groupByWrapper(interval, groupFunc, datapoints) {
|
||||
}
|
||||
|
||||
function groupByWrapper(interval, groupFunc, datapoints) {
|
||||
var groupByCallback = aggregationFunctions[groupFunc];
|
||||
return groupBy(interval, groupByCallback, datapoints);
|
||||
}function aggregateByWrapper(interval, aggregateFunc, datapoints) {
|
||||
}
|
||||
|
||||
function aggregateByWrapper(interval, aggregateFunc, datapoints) {
|
||||
// Flatten all points in frame and then just use groupBy()
|
||||
var flattenedPoints = _.flatten(datapoints, true);
|
||||
var groupByCallback = aggregationFunctions[aggregateFunc];
|
||||
return groupBy(interval, groupByCallback, flattenedPoints);
|
||||
}function aggregateWrapper(groupByCallback, interval, datapoints) {
|
||||
var flattenedPoints = _.flatten(datapoints, true);
|
||||
return groupBy(interval, groupByCallback, flattenedPoints);
|
||||
}function sortByTime(series) {
|
||||
return _.sortBy(series, function (point) {
|
||||
return point[1];
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Interpolate series with gaps
|
||||
*/
|
||||
function interpolateSeries(series) {
|
||||
var left, right;
|
||||
function aggregateWrapper(groupByCallback, interval, datapoints) {
|
||||
var flattenedPoints = _.flatten(datapoints, true);
|
||||
return groupBy(interval, groupByCallback, flattenedPoints);
|
||||
}
|
||||
|
||||
// Interpolate series
|
||||
for (var i = series.length - 1; i >= 0; i--) {
|
||||
if (!series[i][0]) {
|
||||
left = findNearestLeft(series, series[i]);
|
||||
right = findNearestRight(series, series[i]);
|
||||
if (!left) {
|
||||
left = right;
|
||||
}
|
||||
if (!right) {
|
||||
right = left;
|
||||
}
|
||||
series[i][0] = linearInterpolation(series[i][1], left, right);
|
||||
}
|
||||
}
|
||||
return series;
|
||||
}function linearInterpolation(timestamp, left, right) {
|
||||
if (left[1] === right[1]) {
|
||||
return (left[0] + right[0]) / 2;
|
||||
} else {
|
||||
return left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]);
|
||||
}
|
||||
}function findNearestRight(series, point) {
|
||||
var point_index = _.indexOf(series, point);
|
||||
var nearestRight;
|
||||
for (var i = point_index; i < series.length; i++) {
|
||||
if (series[i][0] !== null) {
|
||||
return series[i];
|
||||
}
|
||||
}
|
||||
return nearestRight;
|
||||
}function findNearestLeft(series, point) {
|
||||
var point_index = _.indexOf(series, point);
|
||||
var nearestLeft;
|
||||
for (var i = point_index; i > 0; i--) {
|
||||
if (series[i][0] !== null) {
|
||||
return series[i];
|
||||
}
|
||||
}
|
||||
return nearestLeft;
|
||||
}function timeShift(interval, range) {
|
||||
function timeShift(interval, range) {
|
||||
var shift = utils.parseTimeShiftInterval(interval) / 1000;
|
||||
return _.map(range, function (time) {
|
||||
return time - shift;
|
||||
});
|
||||
}function unShiftTimeSeries(interval, datapoints) {
|
||||
}
|
||||
|
||||
function unShiftTimeSeries(interval, datapoints) {
|
||||
var unshift = utils.parseTimeShiftInterval(interval);
|
||||
return _.map(datapoints, function (dp) {
|
||||
return [dp[0], dp[1] + unshift];
|
||||
});
|
||||
}return {
|
||||
}
|
||||
|
||||
return {
|
||||
setters: [function (_lodash) {
|
||||
_ = _lodash.default;
|
||||
}, function (_utils) {
|
||||
utils = _utils;
|
||||
}, function (_timeseries) {
|
||||
ts = _timeseries.default;
|
||||
}],
|
||||
execute: function () {
|
||||
downsampleSeries = ts.downsample;
|
||||
groupBy = ts.groupBy;
|
||||
sumSeries = ts.sumSeries;
|
||||
scale = ts.scale;
|
||||
delta = ts.delta;
|
||||
SUM = ts.SUM;
|
||||
COUNT = ts.COUNT;
|
||||
AVERAGE = ts.AVERAGE;
|
||||
MIN = ts.MIN;
|
||||
MAX = ts.MAX;
|
||||
MEDIAN = ts.MEDIAN;
|
||||
metricFunctions = {
|
||||
groupBy: groupByWrapper,
|
||||
scale: scale,
|
||||
|
||||
Reference in New Issue
Block a user