move timeseries processing into 'timeseries' module
This commit is contained in:
@@ -1,118 +1,19 @@
|
||||
import _ from 'lodash';
|
||||
import * as utils from './utils';
|
||||
import ts from './timeseries';
|
||||
|
||||
/**
|
||||
* Downsample datapoints series
|
||||
*/
|
||||
function downsampleSeries(datapoints, time_to, ms_interval, func) {
|
||||
var downsampledSeries = [];
|
||||
var timeWindow = {
|
||||
from: time_to * 1000 - ms_interval,
|
||||
to: time_to * 1000
|
||||
};
|
||||
let downsampleSeries = ts.downsample;
|
||||
let groupBy = ts.groupBy;
|
||||
let sumSeries = ts.sumSeries;
|
||||
let scale = ts.scale;
|
||||
let delta = ts.delta;
|
||||
|
||||
var points_sum = 0;
|
||||
var points_num = 0;
|
||||
var value_avg = 0;
|
||||
var frame = [];
|
||||
|
||||
for (var i = datapoints.length - 1; i >= 0; i -= 1) {
|
||||
if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) {
|
||||
points_sum += datapoints[i][0];
|
||||
points_num++;
|
||||
frame.push(datapoints[i][0]);
|
||||
}
|
||||
else {
|
||||
value_avg = points_num ? points_sum / points_num : 0;
|
||||
|
||||
if (func === "max") {
|
||||
downsampledSeries.push([_.max(frame), timeWindow.to]);
|
||||
}
|
||||
else if (func === "min") {
|
||||
downsampledSeries.push([_.min(frame), timeWindow.to]);
|
||||
}
|
||||
|
||||
// avg by default
|
||||
else {
|
||||
downsampledSeries.push([value_avg, timeWindow.to]);
|
||||
}
|
||||
|
||||
// Shift time window
|
||||
timeWindow.to = timeWindow.from;
|
||||
timeWindow.from -= ms_interval;
|
||||
|
||||
points_sum = 0;
|
||||
points_num = 0;
|
||||
frame = [];
|
||||
|
||||
// Process point again
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return downsampledSeries.reverse();
|
||||
}
|
||||
|
||||
/**
|
||||
* Group points by given time interval
|
||||
* datapoints: [[<value>, <unixtime>], ...]
|
||||
*/
|
||||
function groupBy(interval, groupByCallback, datapoints) {
|
||||
var ms_interval = utils.parseInterval(interval);
|
||||
|
||||
// Calculate frame timestamps
|
||||
var frames = _.groupBy(datapoints, function(point) {
|
||||
// Calculate time for group of points
|
||||
return Math.floor(point[1] / ms_interval) * ms_interval;
|
||||
});
|
||||
|
||||
// frame: { '<unixtime>': [[<value>, <unixtime>], ...] }
|
||||
// return [{ '<unixtime>': <value> }, { '<unixtime>': <value> }, ...]
|
||||
var grouped = _.mapValues(frames, function(frame) {
|
||||
var points = _.map(frame, function(point) {
|
||||
return point[0];
|
||||
});
|
||||
return groupByCallback(points);
|
||||
});
|
||||
|
||||
// Convert points to Grafana format
|
||||
return sortByTime(_.map(grouped, function(value, timestamp) {
|
||||
return [Number(value), Number(timestamp)];
|
||||
}));
|
||||
}
|
||||
|
||||
function sumSeries(timeseries) {
|
||||
|
||||
// Calculate new points for interpolation
|
||||
var new_timestamps = _.uniq(_.map(_.flatten(timeseries, true), function(point) {
|
||||
return point[1];
|
||||
}));
|
||||
new_timestamps = _.sortBy(new_timestamps);
|
||||
|
||||
var interpolated_timeseries = _.map(timeseries, function(series) {
|
||||
var timestamps = _.map(series, function(point) {
|
||||
return point[1];
|
||||
});
|
||||
var new_points = _.map(_.difference(new_timestamps, timestamps), function(timestamp) {
|
||||
return [null, timestamp];
|
||||
});
|
||||
var new_series = series.concat(new_points);
|
||||
return sortByTime(new_series);
|
||||
});
|
||||
|
||||
_.each(interpolated_timeseries, interpolateSeries);
|
||||
|
||||
var new_timeseries = [];
|
||||
var sum;
|
||||
for (var i = new_timestamps.length - 1; i >= 0; i--) {
|
||||
sum = 0;
|
||||
for (var j = interpolated_timeseries.length - 1; j >= 0; j--) {
|
||||
sum += interpolated_timeseries[j][i][0];
|
||||
}
|
||||
new_timeseries.push([sum, new_timestamps[i]]);
|
||||
}
|
||||
|
||||
return sortByTime(new_timeseries);
|
||||
}
|
||||
let SUM = ts.SUM;
|
||||
let COUNT = ts.COUNT;
|
||||
let AVERAGE = ts.AVERAGE;
|
||||
let MIN = ts.MIN;
|
||||
let MAX = ts.MAX;
|
||||
let MEDIAN = ts.MEDIAN;
|
||||
|
||||
function limit(order, n, orderByFunc, timeseries) {
|
||||
let orderByCallback = aggregationFunctions[orderByFunc];
|
||||
@@ -130,39 +31,6 @@ function limit(order, n, orderByFunc, timeseries) {
|
||||
}
|
||||
}
|
||||
|
||||
function SUM(values) {
|
||||
var sum = 0;
|
||||
_.each(values, function(value) {
|
||||
sum += value;
|
||||
});
|
||||
return sum;
|
||||
}
|
||||
|
||||
function COUNT(values) {
|
||||
return values.length;
|
||||
}
|
||||
|
||||
function AVERAGE(values) {
|
||||
var sum = 0;
|
||||
_.each(values, function(value) {
|
||||
sum += value;
|
||||
});
|
||||
return sum / values.length;
|
||||
}
|
||||
|
||||
function MIN(values) {
|
||||
return _.min(values);
|
||||
}
|
||||
|
||||
function MAX(values) {
|
||||
return _.max(values);
|
||||
}
|
||||
|
||||
function MEDIAN(values) {
|
||||
var sorted = _.sortBy(values);
|
||||
return sorted[Math.floor(sorted.length / 2)];
|
||||
}
|
||||
|
||||
function setAlias(alias, timeseries) {
|
||||
timeseries.target = alias;
|
||||
return timeseries;
|
||||
@@ -193,25 +61,6 @@ function extractText(str, pattern) {
|
||||
return extractedValue;
|
||||
}
|
||||
|
||||
function scale(factor, datapoints) {
|
||||
return _.map(datapoints, point => {
|
||||
return [
|
||||
point[0] * factor,
|
||||
point[1]
|
||||
];
|
||||
});
|
||||
}
|
||||
|
||||
function delta(datapoints) {
|
||||
let newSeries = [];
|
||||
let deltaValue;
|
||||
for (var i = 1; i < datapoints.length; i++) {
|
||||
deltaValue = datapoints[i][0] - datapoints[i - 1][0];
|
||||
newSeries.push([deltaValue, datapoints[i][1]]);
|
||||
}
|
||||
return newSeries;
|
||||
}
|
||||
|
||||
function groupByWrapper(interval, groupFunc, datapoints) {
|
||||
var groupByCallback = aggregationFunctions[groupFunc];
|
||||
return groupBy(interval, groupByCallback, datapoints);
|
||||
@@ -229,65 +78,6 @@ function aggregateWrapper(groupByCallback, interval, datapoints) {
|
||||
return groupBy(interval, groupByCallback, flattenedPoints);
|
||||
}
|
||||
|
||||
function sortByTime(series) {
|
||||
return _.sortBy(series, function(point) {
|
||||
return point[1];
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Interpolate series with gaps
|
||||
*/
|
||||
function interpolateSeries(series) {
|
||||
var left, right;
|
||||
|
||||
// Interpolate series
|
||||
for (var i = series.length - 1; i >= 0; i--) {
|
||||
if (!series[i][0]) {
|
||||
left = findNearestLeft(series, series[i]);
|
||||
right = findNearestRight(series, series[i]);
|
||||
if (!left) {
|
||||
left = right;
|
||||
}
|
||||
if (!right) {
|
||||
right = left;
|
||||
}
|
||||
series[i][0] = linearInterpolation(series[i][1], left, right);
|
||||
}
|
||||
}
|
||||
return series;
|
||||
}
|
||||
|
||||
function linearInterpolation(timestamp, left, right) {
|
||||
if (left[1] === right[1]) {
|
||||
return (left[0] + right[0]) / 2;
|
||||
} else {
|
||||
return (left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]));
|
||||
}
|
||||
}
|
||||
|
||||
function findNearestRight(series, point) {
|
||||
var point_index = _.indexOf(series, point);
|
||||
var nearestRight;
|
||||
for (var i = point_index; i < series.length; i++) {
|
||||
if (series[i][0] !== null) {
|
||||
return series[i];
|
||||
}
|
||||
}
|
||||
return nearestRight;
|
||||
}
|
||||
|
||||
function findNearestLeft(series, point) {
|
||||
var point_index = _.indexOf(series, point);
|
||||
var nearestLeft;
|
||||
for (var i = point_index; i > 0; i--) {
|
||||
if (series[i][0] !== null) {
|
||||
return series[i];
|
||||
}
|
||||
}
|
||||
return nearestLeft;
|
||||
}
|
||||
|
||||
function timeShift(interval, range) {
|
||||
let shift = utils.parseTimeShiftInterval(interval) / 1000;
|
||||
return _.map(range, time => {
|
||||
|
||||
Reference in New Issue
Block a user