Refactor: dataProcessor.js
This commit is contained in:
@@ -1,281 +0,0 @@
|
|||||||
import _ from 'lodash';
|
|
||||||
import * as utils from './utils';
|
|
||||||
|
|
||||||
export default class DataProcessor {
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Downsample datapoints series
|
|
||||||
*/
|
|
||||||
static downsampleSeries(datapoints, time_to, ms_interval, func) {
|
|
||||||
var downsampledSeries = [];
|
|
||||||
var timeWindow = {
|
|
||||||
from: time_to * 1000 - ms_interval,
|
|
||||||
to: time_to * 1000
|
|
||||||
};
|
|
||||||
|
|
||||||
var points_sum = 0;
|
|
||||||
var points_num = 0;
|
|
||||||
var value_avg = 0;
|
|
||||||
var frame = [];
|
|
||||||
|
|
||||||
for (var i = datapoints.length - 1; i >= 0; i -= 1) {
|
|
||||||
if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) {
|
|
||||||
points_sum += datapoints[i][0];
|
|
||||||
points_num++;
|
|
||||||
frame.push(datapoints[i][0]);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
value_avg = points_num ? points_sum / points_num : 0;
|
|
||||||
|
|
||||||
if (func === "max") {
|
|
||||||
downsampledSeries.push([_.max(frame), timeWindow.to]);
|
|
||||||
}
|
|
||||||
else if (func === "min") {
|
|
||||||
downsampledSeries.push([_.min(frame), timeWindow.to]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// avg by default
|
|
||||||
else {
|
|
||||||
downsampledSeries.push([value_avg, timeWindow.to]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Shift time window
|
|
||||||
timeWindow.to = timeWindow.from;
|
|
||||||
timeWindow.from -= ms_interval;
|
|
||||||
|
|
||||||
points_sum = 0;
|
|
||||||
points_num = 0;
|
|
||||||
frame = [];
|
|
||||||
|
|
||||||
// Process point again
|
|
||||||
i++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return downsampledSeries.reverse();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Group points by given time interval
|
|
||||||
* datapoints: [[<value>, <unixtime>], ...]
|
|
||||||
*/
|
|
||||||
static groupBy(interval, groupByCallback, datapoints) {
|
|
||||||
var ms_interval = utils.parseInterval(interval);
|
|
||||||
|
|
||||||
// Calculate frame timestamps
|
|
||||||
var frames = _.groupBy(datapoints, function(point) {
|
|
||||||
// Calculate time for group of points
|
|
||||||
return Math.floor(point[1] / ms_interval) * ms_interval;
|
|
||||||
});
|
|
||||||
|
|
||||||
// frame: { '<unixtime>': [[<value>, <unixtime>], ...] }
|
|
||||||
// return [{ '<unixtime>': <value> }, { '<unixtime>': <value> }, ...]
|
|
||||||
var grouped = _.mapValues(frames, function(frame) {
|
|
||||||
var points = _.map(frame, function(point) {
|
|
||||||
return point[0];
|
|
||||||
});
|
|
||||||
return groupByCallback(points);
|
|
||||||
});
|
|
||||||
|
|
||||||
// Convert points to Grafana format
|
|
||||||
return sortByTime(_.map(grouped, function(value, timestamp) {
|
|
||||||
return [Number(value), Number(timestamp)];
|
|
||||||
}));
|
|
||||||
}
|
|
||||||
|
|
||||||
static sumSeries(timeseries) {
|
|
||||||
|
|
||||||
// Calculate new points for interpolation
|
|
||||||
var new_timestamps = _.uniq(_.map(_.flatten(timeseries, true), function(point) {
|
|
||||||
return point[1];
|
|
||||||
}));
|
|
||||||
new_timestamps = _.sortBy(new_timestamps);
|
|
||||||
|
|
||||||
var interpolated_timeseries = _.map(timeseries, function(series) {
|
|
||||||
var timestamps = _.map(series, function(point) {
|
|
||||||
return point[1];
|
|
||||||
});
|
|
||||||
var new_points = _.map(_.difference(new_timestamps, timestamps), function(timestamp) {
|
|
||||||
return [null, timestamp];
|
|
||||||
});
|
|
||||||
var new_series = series.concat(new_points);
|
|
||||||
return sortByTime(new_series);
|
|
||||||
});
|
|
||||||
|
|
||||||
_.each(interpolated_timeseries, interpolateSeries);
|
|
||||||
|
|
||||||
var new_timeseries = [];
|
|
||||||
var sum;
|
|
||||||
for (var i = new_timestamps.length - 1; i >= 0; i--) {
|
|
||||||
sum = 0;
|
|
||||||
for (var j = interpolated_timeseries.length - 1; j >= 0; j--) {
|
|
||||||
sum += interpolated_timeseries[j][i][0];
|
|
||||||
}
|
|
||||||
new_timeseries.push([sum, new_timestamps[i]]);
|
|
||||||
}
|
|
||||||
|
|
||||||
return sortByTime(new_timeseries);
|
|
||||||
}
|
|
||||||
|
|
||||||
static limit(order, n, orderByFunc, timeseries) {
|
|
||||||
let orderByCallback = DataProcessor.aggregationFunctions[orderByFunc];
|
|
||||||
let sortByIteratee = (ts) => {
|
|
||||||
let values = _.map(ts.datapoints, (point) => {
|
|
||||||
return point[0];
|
|
||||||
});
|
|
||||||
return orderByCallback(values);
|
|
||||||
};
|
|
||||||
let sortedTimeseries = _.sortBy(timeseries, sortByIteratee);
|
|
||||||
if (order === 'bottom') {
|
|
||||||
return sortedTimeseries.slice(0, n);
|
|
||||||
} else {
|
|
||||||
return sortedTimeseries.slice(-n);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static AVERAGE(values) {
|
|
||||||
var sum = 0;
|
|
||||||
_.each(values, function(value) {
|
|
||||||
sum += value;
|
|
||||||
});
|
|
||||||
return sum / values.length;
|
|
||||||
}
|
|
||||||
|
|
||||||
static MIN(values) {
|
|
||||||
return _.min(values);
|
|
||||||
}
|
|
||||||
|
|
||||||
static MAX(values) {
|
|
||||||
return _.max(values);
|
|
||||||
}
|
|
||||||
|
|
||||||
static MEDIAN(values) {
|
|
||||||
var sorted = _.sortBy(values);
|
|
||||||
return sorted[Math.floor(sorted.length / 2)];
|
|
||||||
}
|
|
||||||
|
|
||||||
static setAlias(alias, timeseries) {
|
|
||||||
timeseries.target = alias;
|
|
||||||
return timeseries;
|
|
||||||
}
|
|
||||||
|
|
||||||
static scale(factor, datapoints) {
|
|
||||||
return _.map(datapoints, point => {
|
|
||||||
return [
|
|
||||||
point[0] * factor,
|
|
||||||
point[1]
|
|
||||||
];
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
static delta(datapoints) {
|
|
||||||
let newSeries = [];
|
|
||||||
let deltaValue;
|
|
||||||
for (var i = 1; i < datapoints.length; i++) {
|
|
||||||
deltaValue = datapoints[i][0] - datapoints[i - 1][0];
|
|
||||||
newSeries.push([deltaValue, datapoints[i][1]]);
|
|
||||||
}
|
|
||||||
return newSeries;
|
|
||||||
}
|
|
||||||
|
|
||||||
static groupByWrapper(interval, groupFunc, datapoints) {
|
|
||||||
var groupByCallback = DataProcessor.aggregationFunctions[groupFunc];
|
|
||||||
return DataProcessor.groupBy(interval, groupByCallback, datapoints);
|
|
||||||
}
|
|
||||||
|
|
||||||
static aggregateByWrapper(interval, aggregateFunc, datapoints) {
|
|
||||||
// Flatten all points in frame and then just use groupBy()
|
|
||||||
var flattenedPoints = _.flatten(datapoints, true);
|
|
||||||
var groupByCallback = DataProcessor.aggregationFunctions[aggregateFunc];
|
|
||||||
return DataProcessor.groupBy(interval, groupByCallback, flattenedPoints);
|
|
||||||
}
|
|
||||||
|
|
||||||
static aggregateWrapper(groupByCallback, interval, datapoints) {
|
|
||||||
var flattenedPoints = _.flatten(datapoints, true);
|
|
||||||
return DataProcessor.groupBy(interval, groupByCallback, flattenedPoints);
|
|
||||||
}
|
|
||||||
|
|
||||||
static get aggregationFunctions() {
|
|
||||||
return {
|
|
||||||
avg: this.AVERAGE,
|
|
||||||
min: this.MIN,
|
|
||||||
max: this.MAX,
|
|
||||||
median: this.MEDIAN
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
static get metricFunctions() {
|
|
||||||
return {
|
|
||||||
groupBy: this.groupByWrapper,
|
|
||||||
scale: this.scale,
|
|
||||||
delta: this.delta,
|
|
||||||
aggregateBy: this.aggregateByWrapper,
|
|
||||||
average: _.partial(this.aggregateWrapper, this.AVERAGE),
|
|
||||||
min: _.partial(this.aggregateWrapper, this.MIN),
|
|
||||||
max: _.partial(this.aggregateWrapper, this.MAX),
|
|
||||||
median: _.partial(this.aggregateWrapper, this.MEDIAN),
|
|
||||||
sumSeries: this.sumSeries,
|
|
||||||
top: _.partial(this.limit, 'top'),
|
|
||||||
bottom: _.partial(this.limit, 'bottom'),
|
|
||||||
setAlias: this.setAlias,
|
|
||||||
};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function sortByTime(series) {
|
|
||||||
return _.sortBy(series, function(point) {
|
|
||||||
return point[1];
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Interpolate series with gaps
|
|
||||||
*/
|
|
||||||
function interpolateSeries(series) {
|
|
||||||
var left, right;
|
|
||||||
|
|
||||||
// Interpolate series
|
|
||||||
for (var i = series.length - 1; i >= 0; i--) {
|
|
||||||
if (!series[i][0]) {
|
|
||||||
left = findNearestLeft(series, series[i]);
|
|
||||||
right = findNearestRight(series, series[i]);
|
|
||||||
if (!left) {
|
|
||||||
left = right;
|
|
||||||
}
|
|
||||||
if (!right) {
|
|
||||||
right = left;
|
|
||||||
}
|
|
||||||
series[i][0] = linearInterpolation(series[i][1], left, right);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return series;
|
|
||||||
}
|
|
||||||
|
|
||||||
function linearInterpolation(timestamp, left, right) {
|
|
||||||
if (left[1] === right[1]) {
|
|
||||||
return (left[0] + right[0]) / 2;
|
|
||||||
} else {
|
|
||||||
return (left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function findNearestRight(series, point) {
|
|
||||||
var point_index = _.indexOf(series, point);
|
|
||||||
var nearestRight;
|
|
||||||
for (var i = point_index; i < series.length; i++) {
|
|
||||||
if (series[i][0] !== null) {
|
|
||||||
return series[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return nearestRight;
|
|
||||||
}
|
|
||||||
|
|
||||||
function findNearestLeft(series, point) {
|
|
||||||
var point_index = _.indexOf(series, point);
|
|
||||||
var nearestLeft;
|
|
||||||
for (var i = point_index; i > 0; i--) {
|
|
||||||
if (series[i][0] !== null) {
|
|
||||||
return series[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return nearestLeft;
|
|
||||||
}
|
|
||||||
291
src/datasource-zabbix/dataProcessor.js
Normal file
291
src/datasource-zabbix/dataProcessor.js
Normal file
@@ -0,0 +1,291 @@
|
|||||||
|
import _ from 'lodash';
|
||||||
|
import * as utils from './utils';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Downsample datapoints series
|
||||||
|
*/
|
||||||
|
function downsampleSeries(datapoints, time_to, ms_interval, func) {
|
||||||
|
var downsampledSeries = [];
|
||||||
|
var timeWindow = {
|
||||||
|
from: time_to * 1000 - ms_interval,
|
||||||
|
to: time_to * 1000
|
||||||
|
};
|
||||||
|
|
||||||
|
var points_sum = 0;
|
||||||
|
var points_num = 0;
|
||||||
|
var value_avg = 0;
|
||||||
|
var frame = [];
|
||||||
|
|
||||||
|
for (var i = datapoints.length - 1; i >= 0; i -= 1) {
|
||||||
|
if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) {
|
||||||
|
points_sum += datapoints[i][0];
|
||||||
|
points_num++;
|
||||||
|
frame.push(datapoints[i][0]);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
value_avg = points_num ? points_sum / points_num : 0;
|
||||||
|
|
||||||
|
if (func === "max") {
|
||||||
|
downsampledSeries.push([_.max(frame), timeWindow.to]);
|
||||||
|
}
|
||||||
|
else if (func === "min") {
|
||||||
|
downsampledSeries.push([_.min(frame), timeWindow.to]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// avg by default
|
||||||
|
else {
|
||||||
|
downsampledSeries.push([value_avg, timeWindow.to]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Shift time window
|
||||||
|
timeWindow.to = timeWindow.from;
|
||||||
|
timeWindow.from -= ms_interval;
|
||||||
|
|
||||||
|
points_sum = 0;
|
||||||
|
points_num = 0;
|
||||||
|
frame = [];
|
||||||
|
|
||||||
|
// Process point again
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return downsampledSeries.reverse();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Group points by given time interval
|
||||||
|
* datapoints: [[<value>, <unixtime>], ...]
|
||||||
|
*/
|
||||||
|
function groupBy(interval, groupByCallback, datapoints) {
|
||||||
|
var ms_interval = utils.parseInterval(interval);
|
||||||
|
|
||||||
|
// Calculate frame timestamps
|
||||||
|
var frames = _.groupBy(datapoints, function(point) {
|
||||||
|
// Calculate time for group of points
|
||||||
|
return Math.floor(point[1] / ms_interval) * ms_interval;
|
||||||
|
});
|
||||||
|
|
||||||
|
// frame: { '<unixtime>': [[<value>, <unixtime>], ...] }
|
||||||
|
// return [{ '<unixtime>': <value> }, { '<unixtime>': <value> }, ...]
|
||||||
|
var grouped = _.mapValues(frames, function(frame) {
|
||||||
|
var points = _.map(frame, function(point) {
|
||||||
|
return point[0];
|
||||||
|
});
|
||||||
|
return groupByCallback(points);
|
||||||
|
});
|
||||||
|
|
||||||
|
// Convert points to Grafana format
|
||||||
|
return sortByTime(_.map(grouped, function(value, timestamp) {
|
||||||
|
return [Number(value), Number(timestamp)];
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
|
function sumSeries(timeseries) {
|
||||||
|
|
||||||
|
// Calculate new points for interpolation
|
||||||
|
var new_timestamps = _.uniq(_.map(_.flatten(timeseries, true), function(point) {
|
||||||
|
return point[1];
|
||||||
|
}));
|
||||||
|
new_timestamps = _.sortBy(new_timestamps);
|
||||||
|
|
||||||
|
var interpolated_timeseries = _.map(timeseries, function(series) {
|
||||||
|
var timestamps = _.map(series, function(point) {
|
||||||
|
return point[1];
|
||||||
|
});
|
||||||
|
var new_points = _.map(_.difference(new_timestamps, timestamps), function(timestamp) {
|
||||||
|
return [null, timestamp];
|
||||||
|
});
|
||||||
|
var new_series = series.concat(new_points);
|
||||||
|
return sortByTime(new_series);
|
||||||
|
});
|
||||||
|
|
||||||
|
_.each(interpolated_timeseries, interpolateSeries);
|
||||||
|
|
||||||
|
var new_timeseries = [];
|
||||||
|
var sum;
|
||||||
|
for (var i = new_timestamps.length - 1; i >= 0; i--) {
|
||||||
|
sum = 0;
|
||||||
|
for (var j = interpolated_timeseries.length - 1; j >= 0; j--) {
|
||||||
|
sum += interpolated_timeseries[j][i][0];
|
||||||
|
}
|
||||||
|
new_timeseries.push([sum, new_timestamps[i]]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return sortByTime(new_timeseries);
|
||||||
|
}
|
||||||
|
|
||||||
|
function limit(order, n, orderByFunc, timeseries) {
|
||||||
|
let orderByCallback = aggregationFunctions[orderByFunc];
|
||||||
|
let sortByIteratee = (ts) => {
|
||||||
|
let values = _.map(ts.datapoints, (point) => {
|
||||||
|
return point[0];
|
||||||
|
});
|
||||||
|
return orderByCallback(values);
|
||||||
|
};
|
||||||
|
let sortedTimeseries = _.sortBy(timeseries, sortByIteratee);
|
||||||
|
if (order === 'bottom') {
|
||||||
|
return sortedTimeseries.slice(0, n);
|
||||||
|
} else {
|
||||||
|
return sortedTimeseries.slice(-n);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function AVERAGE(values) {
|
||||||
|
var sum = 0;
|
||||||
|
_.each(values, function(value) {
|
||||||
|
sum += value;
|
||||||
|
});
|
||||||
|
return sum / values.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
function MIN(values) {
|
||||||
|
return _.min(values);
|
||||||
|
}
|
||||||
|
|
||||||
|
function MAX(values) {
|
||||||
|
return _.max(values);
|
||||||
|
}
|
||||||
|
|
||||||
|
function MEDIAN(values) {
|
||||||
|
var sorted = _.sortBy(values);
|
||||||
|
return sorted[Math.floor(sorted.length / 2)];
|
||||||
|
}
|
||||||
|
|
||||||
|
function setAlias(alias, timeseries) {
|
||||||
|
timeseries.target = alias;
|
||||||
|
return timeseries;
|
||||||
|
}
|
||||||
|
|
||||||
|
function scale(factor, datapoints) {
|
||||||
|
return _.map(datapoints, point => {
|
||||||
|
return [
|
||||||
|
point[0] * factor,
|
||||||
|
point[1]
|
||||||
|
];
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function delta(datapoints) {
|
||||||
|
let newSeries = [];
|
||||||
|
let deltaValue;
|
||||||
|
for (var i = 1; i < datapoints.length; i++) {
|
||||||
|
deltaValue = datapoints[i][0] - datapoints[i - 1][0];
|
||||||
|
newSeries.push([deltaValue, datapoints[i][1]]);
|
||||||
|
}
|
||||||
|
return newSeries;
|
||||||
|
}
|
||||||
|
|
||||||
|
function groupByWrapper(interval, groupFunc, datapoints) {
|
||||||
|
var groupByCallback = aggregationFunctions[groupFunc];
|
||||||
|
return groupBy(interval, groupByCallback, datapoints);
|
||||||
|
}
|
||||||
|
|
||||||
|
function aggregateByWrapper(interval, aggregateFunc, datapoints) {
|
||||||
|
// Flatten all points in frame and then just use groupBy()
|
||||||
|
var flattenedPoints = _.flatten(datapoints, true);
|
||||||
|
var groupByCallback = aggregationFunctions[aggregateFunc];
|
||||||
|
return groupBy(interval, groupByCallback, flattenedPoints);
|
||||||
|
}
|
||||||
|
|
||||||
|
function aggregateWrapper(groupByCallback, interval, datapoints) {
|
||||||
|
var flattenedPoints = _.flatten(datapoints, true);
|
||||||
|
return groupBy(interval, groupByCallback, flattenedPoints);
|
||||||
|
}
|
||||||
|
|
||||||
|
function sortByTime(series) {
|
||||||
|
return _.sortBy(series, function(point) {
|
||||||
|
return point[1];
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Interpolate series with gaps
|
||||||
|
*/
|
||||||
|
function interpolateSeries(series) {
|
||||||
|
var left, right;
|
||||||
|
|
||||||
|
// Interpolate series
|
||||||
|
for (var i = series.length - 1; i >= 0; i--) {
|
||||||
|
if (!series[i][0]) {
|
||||||
|
left = findNearestLeft(series, series[i]);
|
||||||
|
right = findNearestRight(series, series[i]);
|
||||||
|
if (!left) {
|
||||||
|
left = right;
|
||||||
|
}
|
||||||
|
if (!right) {
|
||||||
|
right = left;
|
||||||
|
}
|
||||||
|
series[i][0] = linearInterpolation(series[i][1], left, right);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return series;
|
||||||
|
}
|
||||||
|
|
||||||
|
function linearInterpolation(timestamp, left, right) {
|
||||||
|
if (left[1] === right[1]) {
|
||||||
|
return (left[0] + right[0]) / 2;
|
||||||
|
} else {
|
||||||
|
return (left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function findNearestRight(series, point) {
|
||||||
|
var point_index = _.indexOf(series, point);
|
||||||
|
var nearestRight;
|
||||||
|
for (var i = point_index; i < series.length; i++) {
|
||||||
|
if (series[i][0] !== null) {
|
||||||
|
return series[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return nearestRight;
|
||||||
|
}
|
||||||
|
|
||||||
|
function findNearestLeft(series, point) {
|
||||||
|
var point_index = _.indexOf(series, point);
|
||||||
|
var nearestLeft;
|
||||||
|
for (var i = point_index; i > 0; i--) {
|
||||||
|
if (series[i][0] !== null) {
|
||||||
|
return series[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return nearestLeft;
|
||||||
|
}
|
||||||
|
|
||||||
|
let metricFunctions = {
|
||||||
|
groupBy: groupByWrapper,
|
||||||
|
scale: scale,
|
||||||
|
delta: delta,
|
||||||
|
aggregateBy: aggregateByWrapper,
|
||||||
|
average: _.partial(aggregateWrapper, AVERAGE),
|
||||||
|
min: _.partial(aggregateWrapper, MIN),
|
||||||
|
max: _.partial(aggregateWrapper, MAX),
|
||||||
|
median: _.partial(aggregateWrapper, MEDIAN),
|
||||||
|
sumSeries: sumSeries,
|
||||||
|
top: _.partial(limit, 'top'),
|
||||||
|
bottom: _.partial(limit, 'bottom'),
|
||||||
|
setAlias: setAlias
|
||||||
|
};
|
||||||
|
|
||||||
|
let aggregationFunctions = {
|
||||||
|
avg: AVERAGE,
|
||||||
|
min: MIN,
|
||||||
|
max: MAX,
|
||||||
|
median: MEDIAN
|
||||||
|
};
|
||||||
|
|
||||||
|
export default {
|
||||||
|
downsampleSeries: downsampleSeries,
|
||||||
|
groupBy: groupBy,
|
||||||
|
AVERAGE: AVERAGE,
|
||||||
|
MIN: MIN,
|
||||||
|
MAX: MAX,
|
||||||
|
MEDIAN: MEDIAN,
|
||||||
|
|
||||||
|
get aggregationFunctions() {
|
||||||
|
return aggregationFunctions;
|
||||||
|
},
|
||||||
|
|
||||||
|
get metricFunctions() {
|
||||||
|
return metricFunctions;
|
||||||
|
}
|
||||||
|
};
|
||||||
@@ -4,7 +4,7 @@ import * as dateMath from 'app/core/utils/datemath';
|
|||||||
import * as utils from './utils';
|
import * as utils from './utils';
|
||||||
import * as migrations from './migrations';
|
import * as migrations from './migrations';
|
||||||
import * as metricFunctions from './metricFunctions';
|
import * as metricFunctions from './metricFunctions';
|
||||||
import DataProcessor from './DataProcessor';
|
import dataProcessor from './dataProcessor';
|
||||||
import responseHandler from './responseHandler';
|
import responseHandler from './responseHandler';
|
||||||
import './zabbix.js';
|
import './zabbix.js';
|
||||||
import {ZabbixAPIError} from './zabbixAPICore.service.js';
|
import {ZabbixAPIError} from './zabbixAPICore.service.js';
|
||||||
@@ -394,15 +394,15 @@ function bindFunctionDefs(functionDefs, category) {
|
|||||||
|
|
||||||
return _.map(aggFuncDefs, function(func) {
|
return _.map(aggFuncDefs, function(func) {
|
||||||
var funcInstance = metricFunctions.createFuncInstance(func.def, func.params);
|
var funcInstance = metricFunctions.createFuncInstance(func.def, func.params);
|
||||||
return funcInstance.bindFunction(DataProcessor.metricFunctions);
|
return funcInstance.bindFunction(dataProcessor.metricFunctions);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
function downsampleSeries(timeseries_data, options) {
|
function downsampleSeries(timeseries_data, options) {
|
||||||
return _.map(timeseries_data, timeseries => {
|
return _.map(timeseries_data, timeseries => {
|
||||||
if (timeseries.datapoints.length > options.maxDataPoints) {
|
if (timeseries.datapoints.length > options.maxDataPoints) {
|
||||||
timeseries.datapoints = DataProcessor
|
timeseries.datapoints = dataProcessor
|
||||||
.groupBy(options.interval, DataProcessor.AVERAGE, timeseries.datapoints);
|
.groupBy(options.interval, dataProcessor.AVERAGE, timeseries.datapoints);
|
||||||
}
|
}
|
||||||
return timeseries;
|
return timeseries;
|
||||||
});
|
});
|
||||||
|
|||||||
Reference in New Issue
Block a user