import _ from 'lodash'; import * as utils from './utils'; import ts from './timeseries'; let downsampleSeries = ts.downsample; let groupBy = ts.groupBy_perf; let sumSeries = ts.sumSeries; let delta = ts.delta; let scale = (factor, datapoints) => ts.scale(datapoints, factor); let SUM = ts.SUM; let COUNT = ts.COUNT; let AVERAGE = ts.AVERAGE; let MIN = ts.MIN; let MAX = ts.MAX; let MEDIAN = ts.MEDIAN; function limit(order, n, orderByFunc, timeseries) { let orderByCallback = aggregationFunctions[orderByFunc]; let sortByIteratee = (ts) => { let values = _.map(ts.datapoints, (point) => { return point[0]; }); return orderByCallback(values); }; let sortedTimeseries = _.sortBy(timeseries, sortByIteratee); if (order === 'bottom') { return sortedTimeseries.slice(0, n); } else { return sortedTimeseries.slice(-n); } } function setAlias(alias, timeseries) { timeseries.target = alias; return timeseries; } function replaceAlias(regexp, newAlias, timeseries) { let pattern; if (utils.isRegex(regexp)) { pattern = utils.buildRegex(regexp); } else { pattern = regexp; } let alias = timeseries.target.replace(pattern, newAlias); timeseries.target = alias; return timeseries; } function setAliasByRegex(alias, timeseries) { timeseries.target = extractText(timeseries.target, alias); return timeseries; } function extractText(str, pattern) { var extractPattern = new RegExp(pattern); var extractedValue = extractPattern.exec(str); extractedValue = extractedValue[0]; return extractedValue; } function groupByWrapper(interval, groupFunc, datapoints) { var groupByCallback = aggregationFunctions[groupFunc]; return groupBy(datapoints, interval, groupByCallback); } function aggregateByWrapper(interval, aggregateFunc, datapoints) { // Flatten all points in frame and then just use groupBy() var flattenedPoints = _.flatten(datapoints, true); var groupByCallback = aggregationFunctions[aggregateFunc]; return groupBy(flattenedPoints, interval, groupByCallback); } function aggregateWrapper(groupByCallback, interval, datapoints) { var flattenedPoints = _.flatten(datapoints, true); return groupBy(flattenedPoints, interval, groupByCallback); } function timeShift(interval, range) { let shift = utils.parseTimeShiftInterval(interval) / 1000; return _.map(range, time => { return time - shift; }); } function unShiftTimeSeries(interval, datapoints) { let unshift = utils.parseTimeShiftInterval(interval); return _.map(datapoints, dp => { return [ dp[0], dp[1] + unshift ]; }); } let metricFunctions = { groupBy: groupByWrapper, scale: scale, delta: delta, aggregateBy: aggregateByWrapper, average: _.partial(aggregateWrapper, AVERAGE), min: _.partial(aggregateWrapper, MIN), max: _.partial(aggregateWrapper, MAX), median: _.partial(aggregateWrapper, MEDIAN), sum: _.partial(aggregateWrapper, SUM), count: _.partial(aggregateWrapper, COUNT), sumSeries: sumSeries, top: _.partial(limit, 'top'), bottom: _.partial(limit, 'bottom'), timeShift: timeShift, setAlias: setAlias, setAliasByRegex: setAliasByRegex, replaceAlias: replaceAlias }; let aggregationFunctions = { avg: AVERAGE, min: MIN, max: MAX, median: MEDIAN, sum: SUM, count: COUNT }; export default { downsampleSeries: downsampleSeries, groupBy: groupBy, AVERAGE: AVERAGE, MIN: MIN, MAX: MAX, MEDIAN: MEDIAN, SUM: SUM, COUNT: COUNT, unShiftTimeSeries: unShiftTimeSeries, get aggregationFunctions() { return aggregationFunctions; }, get metricFunctions() { return metricFunctions; } };