'use strict'; System.register(['lodash', './utils'], function (_export, _context) { "use strict"; var _, utils, metricFunctions, aggregationFunctions; /** * Downsample datapoints series */ function downsampleSeries(datapoints, time_to, ms_interval, func) { var downsampledSeries = []; var timeWindow = { from: time_to * 1000 - ms_interval, to: time_to * 1000 }; var points_sum = 0; var points_num = 0; var value_avg = 0; var frame = []; for (var i = datapoints.length - 1; i >= 0; i -= 1) { if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) { points_sum += datapoints[i][0]; points_num++; frame.push(datapoints[i][0]); } else { value_avg = points_num ? points_sum / points_num : 0; if (func === "max") { downsampledSeries.push([_.max(frame), timeWindow.to]); } else if (func === "min") { downsampledSeries.push([_.min(frame), timeWindow.to]); } // avg by default else { downsampledSeries.push([value_avg, timeWindow.to]); } // Shift time window timeWindow.to = timeWindow.from; timeWindow.from -= ms_interval; points_sum = 0; points_num = 0; frame = []; // Process point again i++; } } return downsampledSeries.reverse(); } /** * Group points by given time interval * datapoints: [[, ], ...] */ function groupBy(interval, groupByCallback, datapoints) { var ms_interval = utils.parseInterval(interval); // Calculate frame timestamps var frames = _.groupBy(datapoints, function (point) { // Calculate time for group of points return Math.floor(point[1] / ms_interval) * ms_interval; }); // frame: { '': [[, ], ...] } // return [{ '': }, { '': }, ...] var grouped = _.mapValues(frames, function (frame) { var points = _.map(frame, function (point) { return point[0]; }); return groupByCallback(points); }); // Convert points to Grafana format return sortByTime(_.map(grouped, function (value, timestamp) { return [Number(value), Number(timestamp)]; })); }function sumSeries(timeseries) { // Calculate new points for interpolation var new_timestamps = _.uniq(_.map(_.flatten(timeseries, true), function (point) { return point[1]; })); new_timestamps = _.sortBy(new_timestamps); var interpolated_timeseries = _.map(timeseries, function (series) { var timestamps = _.map(series, function (point) { return point[1]; }); var new_points = _.map(_.difference(new_timestamps, timestamps), function (timestamp) { return [null, timestamp]; }); var new_series = series.concat(new_points); return sortByTime(new_series); }); _.each(interpolated_timeseries, interpolateSeries); var new_timeseries = []; var sum; for (var i = new_timestamps.length - 1; i >= 0; i--) { sum = 0; for (var j = interpolated_timeseries.length - 1; j >= 0; j--) { sum += interpolated_timeseries[j][i][0]; } new_timeseries.push([sum, new_timestamps[i]]); } return sortByTime(new_timeseries); }function limit(order, n, orderByFunc, timeseries) { var orderByCallback = aggregationFunctions[orderByFunc]; var sortByIteratee = function sortByIteratee(ts) { var values = _.map(ts.datapoints, function (point) { return point[0]; }); return orderByCallback(values); }; var sortedTimeseries = _.sortBy(timeseries, sortByIteratee); if (order === 'bottom') { return sortedTimeseries.slice(0, n); } else { return sortedTimeseries.slice(-n); } }function AVERAGE(values) { var sum = 0; _.each(values, function (value) { sum += value; }); return sum / values.length; }function MIN(values) { return _.min(values); }function MAX(values) { return _.max(values); }function MEDIAN(values) { var sorted = _.sortBy(values); return sorted[Math.floor(sorted.length / 2)]; }function setAlias(alias, timeseries) { timeseries.target = alias; return timeseries; }function setAliasByRegex(alias, timeseries) { timeseries.target = extractText(timeseries.target, alias); return timeseries; }function extractText(str, pattern) { var extractPattern = new RegExp(pattern); var extractedValue = extractPattern.exec(str); extractedValue = extractedValue[0]; return extractedValue; }function scale(factor, datapoints) { return _.map(datapoints, function (point) { return [point[0] * factor, point[1]]; }); }function delta(datapoints) { var newSeries = []; var deltaValue = void 0; for (var i = 1; i < datapoints.length; i++) { deltaValue = datapoints[i][0] - datapoints[i - 1][0]; newSeries.push([deltaValue, datapoints[i][1]]); } return newSeries; }function groupByWrapper(interval, groupFunc, datapoints) { var groupByCallback = aggregationFunctions[groupFunc]; return groupBy(interval, groupByCallback, datapoints); }function aggregateByWrapper(interval, aggregateFunc, datapoints) { // Flatten all points in frame and then just use groupBy() var flattenedPoints = _.flatten(datapoints, true); var groupByCallback = aggregationFunctions[aggregateFunc]; return groupBy(interval, groupByCallback, flattenedPoints); }function aggregateWrapper(groupByCallback, interval, datapoints) { var flattenedPoints = _.flatten(datapoints, true); return groupBy(interval, groupByCallback, flattenedPoints); }function sortByTime(series) { return _.sortBy(series, function (point) { return point[1]; }); } /** * Interpolate series with gaps */ function interpolateSeries(series) { var left, right; // Interpolate series for (var i = series.length - 1; i >= 0; i--) { if (!series[i][0]) { left = findNearestLeft(series, series[i]); right = findNearestRight(series, series[i]); if (!left) { left = right; } if (!right) { right = left; } series[i][0] = linearInterpolation(series[i][1], left, right); } } return series; }function linearInterpolation(timestamp, left, right) { if (left[1] === right[1]) { return (left[0] + right[0]) / 2; } else { return left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]); } }function findNearestRight(series, point) { var point_index = _.indexOf(series, point); var nearestRight; for (var i = point_index; i < series.length; i++) { if (series[i][0] !== null) { return series[i]; } } return nearestRight; }function findNearestLeft(series, point) { var point_index = _.indexOf(series, point); var nearestLeft; for (var i = point_index; i > 0; i--) { if (series[i][0] !== null) { return series[i]; } } return nearestLeft; }function timeShift(interval, range) { var shift = utils.parseTimeShiftInterval(interval) / 1000; return range.map(function (time) { return time - shift; }); }function unShiftTimeSeries(interval, datapoints) { var unshift = utils.parseTimeShiftInterval(interval); return datapoints.map(function (dp) { return [dp[0], dp[1] + unshift]; }); }return { setters: [function (_lodash) { _ = _lodash.default; }, function (_utils) { utils = _utils; }], execute: function () { metricFunctions = { groupBy: groupByWrapper, scale: scale, delta: delta, aggregateBy: aggregateByWrapper, average: _.partial(aggregateWrapper, AVERAGE), min: _.partial(aggregateWrapper, MIN), max: _.partial(aggregateWrapper, MAX), median: _.partial(aggregateWrapper, MEDIAN), sumSeries: sumSeries, top: _.partial(limit, 'top'), bottom: _.partial(limit, 'bottom'), timeShift: timeShift, setAlias: setAlias, setAliasByRegex: setAliasByRegex }; aggregationFunctions = { avg: AVERAGE, min: MIN, max: MAX, median: MEDIAN }; _export('default', { downsampleSeries: downsampleSeries, groupBy: groupBy, AVERAGE: AVERAGE, MIN: MIN, MAX: MAX, MEDIAN: MEDIAN, unShiftTimeSeries: unShiftTimeSeries, get aggregationFunctions() { return aggregationFunctions; }, get metricFunctions() { return metricFunctions; } }); } }; }); //# sourceMappingURL=dataProcessor.js.map