203 lines
5.2 KiB
JavaScript
203 lines
5.2 KiB
JavaScript
import _ from 'lodash';
|
|
import * as utils from './utils';
|
|
import ts from './timeseries';
|
|
|
|
let downsampleSeries = ts.downsample;
|
|
let groupBy = ts.groupBy_perf;
|
|
let groupBy_exported = (interval, groupFunc, datapoints) => groupBy(datapoints, interval, groupFunc);
|
|
let sumSeries = ts.sumSeries;
|
|
let delta = ts.delta;
|
|
let rate = ts.rate;
|
|
let scale = (factor, datapoints) => ts.scale_perf(datapoints, factor);
|
|
let offset = (delta, datapoints) => ts.offset(datapoints, delta);
|
|
let simpleMovingAverage = (n, datapoints) => ts.simpleMovingAverage(datapoints, n);
|
|
let expMovingAverage = (a, datapoints) => ts.expMovingAverage(datapoints, a);
|
|
|
|
let SUM = ts.SUM;
|
|
let COUNT = ts.COUNT;
|
|
let AVERAGE = ts.AVERAGE;
|
|
let MIN = ts.MIN;
|
|
let MAX = ts.MAX;
|
|
let MEDIAN = ts.MEDIAN;
|
|
let PERCENTIL = ts.PERCENTIL;
|
|
|
|
function limit(order, n, orderByFunc, timeseries) {
|
|
let orderByCallback = aggregationFunctions[orderByFunc];
|
|
let sortByIteratee = (ts) => {
|
|
let values = _.map(ts.datapoints, (point) => {
|
|
return point[0];
|
|
});
|
|
return orderByCallback(values);
|
|
};
|
|
let sortedTimeseries = _.sortBy(timeseries, sortByIteratee);
|
|
if (order === 'bottom') {
|
|
return sortedTimeseries.slice(0, n);
|
|
} else {
|
|
return sortedTimeseries.slice(-n);
|
|
}
|
|
}
|
|
|
|
function removeAboveValue(n, datapoints) {
|
|
return _.map(datapoints, point => {
|
|
return [
|
|
(point[0] > n) ? null : point[0],
|
|
point[1]
|
|
];
|
|
});
|
|
}
|
|
|
|
function removeBelowValue(n, datapoints) {
|
|
return _.map(datapoints, point => {
|
|
return [
|
|
(point[0] < n) ? null : point[0],
|
|
point[1]
|
|
];
|
|
});
|
|
}
|
|
|
|
function transformNull(n, datapoints) {
|
|
return _.map(datapoints, point => {
|
|
return [
|
|
(point[0] !== null) ? point[0] : n,
|
|
point[1]
|
|
];
|
|
});
|
|
}
|
|
|
|
function sortSeries(direction, timeseries) {
|
|
return _.orderBy(timeseries, [function (ts) {
|
|
return ts.target.toLowerCase();
|
|
}], direction);
|
|
}
|
|
|
|
function setAlias(alias, timeseries) {
|
|
timeseries.target = alias;
|
|
return timeseries;
|
|
}
|
|
|
|
function replaceAlias(regexp, newAlias, timeseries) {
|
|
let pattern;
|
|
if (utils.isRegex(regexp)) {
|
|
pattern = utils.buildRegex(regexp);
|
|
} else {
|
|
pattern = regexp;
|
|
}
|
|
|
|
let alias = timeseries.target.replace(pattern, newAlias);
|
|
timeseries.target = alias;
|
|
return timeseries;
|
|
}
|
|
|
|
function setAliasByRegex(alias, timeseries) {
|
|
timeseries.target = extractText(timeseries.target, alias);
|
|
return timeseries;
|
|
}
|
|
|
|
function extractText(str, pattern) {
|
|
var extractPattern = new RegExp(pattern);
|
|
var extractedValue = extractPattern.exec(str);
|
|
extractedValue = extractedValue[0];
|
|
return extractedValue;
|
|
}
|
|
|
|
function groupByWrapper(interval, groupFunc, datapoints) {
|
|
var groupByCallback = aggregationFunctions[groupFunc];
|
|
return groupBy(datapoints, interval, groupByCallback);
|
|
}
|
|
|
|
function aggregateByWrapper(interval, aggregateFunc, datapoints) {
|
|
// Flatten all points in frame and then just use groupBy()
|
|
const flattenedPoints = _.flatten(datapoints, true);
|
|
// groupBy_perf works with sorted series only
|
|
const sortedPoints = ts.sortByTime(flattenedPoints);
|
|
let groupByCallback = aggregationFunctions[aggregateFunc];
|
|
return groupBy(sortedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function aggregateWrapper(groupByCallback, interval, datapoints) {
|
|
var flattenedPoints = _.flatten(datapoints, true);
|
|
return groupBy(flattenedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function percentil(interval, n, datapoints) {
|
|
var flattenedPoints = _.flatten(datapoints, true);
|
|
var groupByCallback = _.partial(PERCENTIL, n);
|
|
return groupBy(flattenedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function timeShift(interval, range) {
|
|
let shift = utils.parseTimeShiftInterval(interval) / 1000;
|
|
return _.map(range, time => {
|
|
return time - shift;
|
|
});
|
|
}
|
|
|
|
function unShiftTimeSeries(interval, datapoints) {
|
|
let unshift = utils.parseTimeShiftInterval(interval);
|
|
return _.map(datapoints, dp => {
|
|
return [
|
|
dp[0],
|
|
dp[1] + unshift
|
|
];
|
|
});
|
|
}
|
|
|
|
let metricFunctions = {
|
|
groupBy: groupByWrapper,
|
|
scale: scale,
|
|
offset: offset,
|
|
delta: delta,
|
|
rate: rate,
|
|
movingAverage: simpleMovingAverage,
|
|
exponentialMovingAverage: expMovingAverage,
|
|
transformNull: transformNull,
|
|
aggregateBy: aggregateByWrapper,
|
|
// Predefined aggs
|
|
percentil: percentil,
|
|
average: _.partial(aggregateWrapper, AVERAGE),
|
|
min: _.partial(aggregateWrapper, MIN),
|
|
max: _.partial(aggregateWrapper, MAX),
|
|
median: _.partial(aggregateWrapper, MEDIAN),
|
|
sum: _.partial(aggregateWrapper, SUM),
|
|
count: _.partial(aggregateWrapper, COUNT),
|
|
sumSeries: sumSeries,
|
|
removeAboveValue: removeAboveValue,
|
|
removeBelowValue: removeBelowValue,
|
|
top: _.partial(limit, 'top'),
|
|
bottom: _.partial(limit, 'bottom'),
|
|
sortSeries: sortSeries,
|
|
timeShift: timeShift,
|
|
setAlias: setAlias,
|
|
setAliasByRegex: setAliasByRegex,
|
|
replaceAlias: replaceAlias
|
|
};
|
|
|
|
let aggregationFunctions = {
|
|
avg: AVERAGE,
|
|
min: MIN,
|
|
max: MAX,
|
|
median: MEDIAN,
|
|
sum: SUM,
|
|
count: COUNT
|
|
};
|
|
|
|
export default {
|
|
downsampleSeries: downsampleSeries,
|
|
groupBy: groupBy_exported,
|
|
AVERAGE: AVERAGE,
|
|
MIN: MIN,
|
|
MAX: MAX,
|
|
MEDIAN: MEDIAN,
|
|
SUM: SUM,
|
|
COUNT: COUNT,
|
|
unShiftTimeSeries: unShiftTimeSeries,
|
|
|
|
get aggregationFunctions() {
|
|
return aggregationFunctions;
|
|
},
|
|
|
|
get metricFunctions() {
|
|
return metricFunctions;
|
|
}
|
|
};
|