* CI: fix shellcheck issues (#789) Signed-off-by: Mario Trangoni <mjtrangoni@gmail.com> * annotations: fix options in grafana 6.x, fix #813 * fix function editor in Grafana 6.4, closes #810 * add typings for grafana packages * Add $__range_series variable for calculating function over the whole series, #531 * fix tests * Don't set alert styles for react panels, fix #823 * docs: add range variables * docs: percentile reference * fix codespell Co-authored-by: Mario Trangoni <mario@mariotrangoni.de> Co-authored-by: Alexander Zobnin <alexanderzobnin@gmail.com>
537 lines
13 KiB
JavaScript
537 lines
13 KiB
JavaScript
/**
|
|
* timeseries.js
|
|
*
|
|
* This module contains functions for working with time series.
|
|
*
|
|
* datapoints - array of points where point is [value, timestamp]. In almost all cases (if other wasn't
|
|
* explicitly said) we assume datapoints are sorted by timestamp. Timestamp is the number of milliseconds
|
|
* since 1 January 1970 00:00:00 UTC.
|
|
*
|
|
*/
|
|
|
|
import _ from 'lodash';
|
|
import * as utils from './utils';
|
|
import * as c from './constants';
|
|
|
|
const POINT_VALUE = 0;
|
|
const POINT_TIMESTAMP = 1;
|
|
|
|
/**
|
|
* Downsample time series by using given function (avg, min, max).
|
|
*/
|
|
function downsample(datapoints, time_to, ms_interval, func) {
|
|
var downsampledSeries = [];
|
|
var timeWindow = {
|
|
from: time_to * 1000 - ms_interval,
|
|
to: time_to * 1000
|
|
};
|
|
|
|
var points_sum = 0;
|
|
var points_num = 0;
|
|
var value_avg = 0;
|
|
var frame = [];
|
|
|
|
for (var i = datapoints.length - 1; i >= 0; i -= 1) {
|
|
if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) {
|
|
points_sum += datapoints[i][0];
|
|
points_num++;
|
|
frame.push(datapoints[i][0]);
|
|
}
|
|
else {
|
|
value_avg = points_num ? points_sum / points_num : 0;
|
|
|
|
if (func === "max") {
|
|
downsampledSeries.push([_.max(frame), timeWindow.to]);
|
|
}
|
|
else if (func === "min") {
|
|
downsampledSeries.push([_.min(frame), timeWindow.to]);
|
|
}
|
|
|
|
// avg by default
|
|
else {
|
|
downsampledSeries.push([value_avg, timeWindow.to]);
|
|
}
|
|
|
|
// Shift time window
|
|
timeWindow.to = timeWindow.from;
|
|
timeWindow.from -= ms_interval;
|
|
|
|
points_sum = 0;
|
|
points_num = 0;
|
|
frame = [];
|
|
|
|
// Process point again
|
|
i++;
|
|
}
|
|
}
|
|
return downsampledSeries.reverse();
|
|
}
|
|
|
|
/**
|
|
* Group points by given time interval
|
|
* datapoints: [[<value>, <unixtime>], ...]
|
|
*/
|
|
function groupBy(datapoints, interval, groupByCallback) {
|
|
var ms_interval = utils.parseInterval(interval);
|
|
|
|
// Calculate frame timestamps
|
|
var frames = _.groupBy(datapoints, function (point) {
|
|
// Calculate time for group of points
|
|
return Math.floor(point[1] / ms_interval) * ms_interval;
|
|
});
|
|
|
|
// frame: { '<unixtime>': [[<value>, <unixtime>], ...] }
|
|
// return [{ '<unixtime>': <value> }, { '<unixtime>': <value> }, ...]
|
|
var grouped = _.mapValues(frames, function (frame) {
|
|
var points = _.map(frame, function (point) {
|
|
return point[0];
|
|
});
|
|
return groupByCallback(points);
|
|
});
|
|
|
|
// Convert points to Grafana format
|
|
return sortByTime(_.map(grouped, function (value, timestamp) {
|
|
return [Number(value), Number(timestamp)];
|
|
}));
|
|
}
|
|
|
|
export function groupBy_perf(datapoints, interval, groupByCallback) {
|
|
if (datapoints.length === 0) {
|
|
return [];
|
|
}
|
|
|
|
if (interval === c.RANGE_VARIABLE_VALUE) {
|
|
return groupByRange(datapoints, groupByCallback);
|
|
}
|
|
|
|
let ms_interval = utils.parseInterval(interval);
|
|
let grouped_series = [];
|
|
let frame_values = [];
|
|
let frame_value;
|
|
let frame_ts = datapoints.length ? getPointTimeFrame(datapoints[0][POINT_TIMESTAMP], ms_interval) : 0;
|
|
let point_frame_ts = frame_ts;
|
|
let point;
|
|
|
|
for (let i=0; i < datapoints.length; i++) {
|
|
point = datapoints[i];
|
|
point_frame_ts = getPointTimeFrame(point[POINT_TIMESTAMP], ms_interval);
|
|
if (point_frame_ts === frame_ts) {
|
|
frame_values.push(point[POINT_VALUE]);
|
|
} else if (point_frame_ts > frame_ts) {
|
|
frame_value = groupByCallback(frame_values);
|
|
grouped_series.push([frame_value, frame_ts]);
|
|
|
|
// Move frame window to next non-empty interval and fill empty by null
|
|
frame_ts += ms_interval;
|
|
while (frame_ts < point_frame_ts) {
|
|
grouped_series.push([null, frame_ts]);
|
|
frame_ts += ms_interval;
|
|
}
|
|
frame_values = [point[POINT_VALUE]];
|
|
}
|
|
}
|
|
|
|
frame_value = groupByCallback(frame_values);
|
|
grouped_series.push([frame_value, frame_ts]);
|
|
|
|
return grouped_series;
|
|
}
|
|
|
|
export function groupByRange(datapoints, groupByCallback) {
|
|
const frame_values = [];
|
|
const frame_start = datapoints[0][POINT_TIMESTAMP];
|
|
const frame_end = datapoints[datapoints.length - 1][POINT_TIMESTAMP];
|
|
let point;
|
|
for (let i=0; i < datapoints.length; i++) {
|
|
point = datapoints[i];
|
|
frame_values.push(point[POINT_VALUE]);
|
|
}
|
|
const frame_value = groupByCallback(frame_values);
|
|
return [[frame_value, frame_start], [frame_value, frame_end]];
|
|
}
|
|
|
|
/**
|
|
* Summarize set of time series into one.
|
|
* @param {datapoints[]} timeseries array of time series
|
|
*/
|
|
function sumSeries(timeseries) {
|
|
|
|
// Calculate new points for interpolation
|
|
var new_timestamps = _.uniq(_.map(_.flatten(timeseries, true), function (point) {
|
|
return point[1];
|
|
}));
|
|
new_timestamps = _.sortBy(new_timestamps);
|
|
|
|
var interpolated_timeseries = _.map(timeseries, function (series) {
|
|
series = fillZeroes(series, new_timestamps);
|
|
var timestamps = _.map(series, function (point) {
|
|
return point[1];
|
|
});
|
|
var new_points = _.map(_.difference(new_timestamps, timestamps), function (timestamp) {
|
|
return [null, timestamp];
|
|
});
|
|
var new_series = series.concat(new_points);
|
|
return sortByTime(new_series);
|
|
});
|
|
|
|
_.each(interpolated_timeseries, interpolateSeries);
|
|
|
|
var new_timeseries = [];
|
|
var sum;
|
|
for (var i = new_timestamps.length - 1; i >= 0; i--) {
|
|
sum = 0;
|
|
for (var j = interpolated_timeseries.length - 1; j >= 0; j--) {
|
|
sum += interpolated_timeseries[j][i][0];
|
|
}
|
|
new_timeseries.push([sum, new_timestamps[i]]);
|
|
}
|
|
|
|
return sortByTime(new_timeseries);
|
|
}
|
|
|
|
function scale(datapoints, factor) {
|
|
return _.map(datapoints, point => {
|
|
return [
|
|
point[0] * factor,
|
|
point[1]
|
|
];
|
|
});
|
|
}
|
|
|
|
function scale_perf(datapoints, factor) {
|
|
for (let i = 0; i < datapoints.length; i++) {
|
|
datapoints[i] = [
|
|
datapoints[i][POINT_VALUE] * factor,
|
|
datapoints[i][POINT_TIMESTAMP]
|
|
];
|
|
}
|
|
|
|
return datapoints;
|
|
}
|
|
|
|
function offset(datapoints, delta) {
|
|
for (let i = 0; i < datapoints.length; i++) {
|
|
datapoints[i] = [
|
|
datapoints[i][POINT_VALUE] + delta,
|
|
datapoints[i][POINT_TIMESTAMP]
|
|
];
|
|
}
|
|
|
|
return datapoints;
|
|
}
|
|
|
|
/**
|
|
* Simple delta. Calculate value delta between points.
|
|
* @param {*} datapoints
|
|
*/
|
|
function delta(datapoints) {
|
|
let newSeries = [];
|
|
let deltaValue;
|
|
for (var i = 1; i < datapoints.length; i++) {
|
|
deltaValue = datapoints[i][0] - datapoints[i - 1][0];
|
|
newSeries.push([deltaValue, datapoints[i][1]]);
|
|
}
|
|
return newSeries;
|
|
}
|
|
|
|
/**
|
|
* Calculates rate per second. Resistant to counter reset.
|
|
* @param {*} datapoints
|
|
*/
|
|
function rate(datapoints) {
|
|
let newSeries = [];
|
|
let point, point_prev;
|
|
let valueDelta = 0;
|
|
let timeDelta = 0;
|
|
for (let i = 1; i < datapoints.length; i++) {
|
|
point = datapoints[i];
|
|
point_prev = datapoints[i - 1];
|
|
|
|
// Convert ms to seconds
|
|
timeDelta = (point[POINT_TIMESTAMP] - point_prev[POINT_TIMESTAMP]) / 1000;
|
|
|
|
// Handle counter reset - use previous value
|
|
if (point[POINT_VALUE] >= point_prev[POINT_VALUE]) {
|
|
valueDelta = (point[POINT_VALUE] - point_prev[POINT_VALUE]) / timeDelta;
|
|
}
|
|
|
|
newSeries.push([valueDelta, point[POINT_TIMESTAMP]]);
|
|
}
|
|
return newSeries;
|
|
}
|
|
|
|
function simpleMovingAverage(datapoints, n) {
|
|
let sma = [];
|
|
let w_sum;
|
|
let w_avg = null;
|
|
let w_count = 0;
|
|
|
|
// Initial window
|
|
for (let j = n; j > 0; j--) {
|
|
if (datapoints[n - j][POINT_VALUE] !== null) {
|
|
w_avg += datapoints[n - j][POINT_VALUE];
|
|
w_count++;
|
|
}
|
|
}
|
|
if (w_count > 0) {
|
|
w_avg = w_avg / w_count;
|
|
} else {
|
|
w_avg = null;
|
|
}
|
|
sma.push([w_avg, datapoints[n - 1][POINT_TIMESTAMP]]);
|
|
|
|
for (let i = n; i < datapoints.length; i++) {
|
|
// Insert next value
|
|
if (datapoints[i][POINT_VALUE] !== null) {
|
|
w_sum = w_avg * w_count;
|
|
w_avg = (w_sum + datapoints[i][POINT_VALUE]) / (w_count + 1);
|
|
w_count++;
|
|
}
|
|
// Remove left side point
|
|
if (datapoints[i - n][POINT_VALUE] !== null) {
|
|
w_sum = w_avg * w_count;
|
|
if (w_count > 1) {
|
|
w_avg = (w_sum - datapoints[i - n][POINT_VALUE]) / (w_count - 1);
|
|
w_count--;
|
|
} else {
|
|
w_avg = null;
|
|
w_count = 0;
|
|
}
|
|
}
|
|
sma.push([w_avg, datapoints[i][POINT_TIMESTAMP]]);
|
|
}
|
|
return sma;
|
|
}
|
|
|
|
function expMovingAverage(datapoints, n) {
|
|
let ema = [datapoints[0]];
|
|
let ema_prev = datapoints[0][POINT_VALUE];
|
|
let ema_cur;
|
|
let a;
|
|
|
|
if (n > 1) {
|
|
// Calculate a from window size
|
|
a = 2 / (n + 1);
|
|
|
|
// Initial window, use simple moving average
|
|
let w_avg = null;
|
|
let w_count = 0;
|
|
for (let j = n; j > 0; j--) {
|
|
if (datapoints[n - j][POINT_VALUE] !== null) {
|
|
w_avg += datapoints[n - j][POINT_VALUE];
|
|
w_count++;
|
|
}
|
|
}
|
|
if (w_count > 0) {
|
|
w_avg = w_avg / w_count;
|
|
// Actually, we should set timestamp from datapoints[n-1] and start calculation of EMA from n.
|
|
// But in order to start EMA from first point (not from Nth) we should expand time range and request N additional
|
|
// points outside left side of range. We can't do that, so this trick is used for pretty view of first N points.
|
|
// We calculate AVG for first N points, but then start from 2nd point, not from Nth. In general, it means we
|
|
// assume that previous N values (0-N, 0-(N-1), ..., 0-1) have the same average value as a first N values.
|
|
ema = [[w_avg, datapoints[0][POINT_TIMESTAMP]]];
|
|
ema_prev = w_avg;
|
|
n = 1;
|
|
}
|
|
} else {
|
|
// Use predefined a and start from 1st point (use it as initial EMA value)
|
|
a = n;
|
|
n = 1;
|
|
}
|
|
|
|
for (let i = n; i < datapoints.length; i++) {
|
|
if (datapoints[i][POINT_VALUE] !== null) {
|
|
ema_cur = a * datapoints[i][POINT_VALUE] + (1 - a) * ema_prev;
|
|
ema_prev = ema_cur;
|
|
ema.push([ema_cur, datapoints[i][POINT_TIMESTAMP]]);
|
|
} else {
|
|
ema.push([null, datapoints[i][POINT_TIMESTAMP]]);
|
|
}
|
|
}
|
|
return ema;
|
|
}
|
|
|
|
function PERCENTILE(n, values) {
|
|
var sorted = _.sortBy(values);
|
|
return sorted[Math.floor(sorted.length * n / 100)];
|
|
}
|
|
|
|
function COUNT(values) {
|
|
return values.length;
|
|
}
|
|
|
|
function SUM(values) {
|
|
var sum = null;
|
|
for (let i = 0; i < values.length; i++) {
|
|
if (values[i] !== null) {
|
|
sum += values[i];
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
function AVERAGE(values) {
|
|
let values_non_null = getNonNullValues(values);
|
|
if (values_non_null.length === 0) {
|
|
return null;
|
|
}
|
|
return SUM(values_non_null) / values_non_null.length;
|
|
}
|
|
|
|
function getNonNullValues(values) {
|
|
let values_non_null = [];
|
|
for (let i = 0; i < values.length; i++) {
|
|
if (values[i] !== null) {
|
|
values_non_null.push(values[i]);
|
|
}
|
|
}
|
|
return values_non_null;
|
|
}
|
|
|
|
function MIN(values) {
|
|
return _.min(values);
|
|
}
|
|
|
|
function MAX(values) {
|
|
return _.max(values);
|
|
}
|
|
|
|
function MEDIAN(values) {
|
|
var sorted = _.sortBy(values);
|
|
return sorted[Math.floor(sorted.length / 2)];
|
|
}
|
|
|
|
///////////////////////
|
|
// Utility functions //
|
|
///////////////////////
|
|
|
|
/**
|
|
* For given point calculate corresponding time frame.
|
|
*
|
|
* |__*_|_*__|___*| -> |*___|*___|*___|
|
|
*
|
|
* @param {*} timestamp
|
|
* @param {*} ms_interval
|
|
*/
|
|
function getPointTimeFrame(timestamp, ms_interval) {
|
|
return Math.floor(timestamp / ms_interval) * ms_interval;
|
|
}
|
|
|
|
function sortByTime(series) {
|
|
return _.sortBy(series, function (point) {
|
|
return point[1];
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Fill empty front and end of series by zeroes.
|
|
*
|
|
* | *** | | *** |
|
|
* |___ ___| -> |*** ***|
|
|
* @param {*} series
|
|
* @param {*} timestamps
|
|
*/
|
|
function fillZeroes(series, timestamps) {
|
|
let prepend = [];
|
|
let append = [];
|
|
let new_point;
|
|
for (let i = 0; i < timestamps.length; i++) {
|
|
if (timestamps[i] < series[0][POINT_TIMESTAMP]) {
|
|
new_point = [0, timestamps[i]];
|
|
prepend.push(new_point);
|
|
} else if (timestamps[i] > series[series.length - 1][POINT_TIMESTAMP]) {
|
|
new_point = [0, timestamps[i]];
|
|
append.push(new_point);
|
|
}
|
|
}
|
|
return _.concat(_.concat(prepend, series), append);
|
|
}
|
|
|
|
/**
|
|
* Interpolate series with gaps
|
|
*/
|
|
function interpolateSeries(series) {
|
|
var left, right;
|
|
|
|
// Interpolate series
|
|
for (var i = series.length - 1; i >= 0; i--) {
|
|
if (!series[i][0]) {
|
|
left = findNearestLeft(series, i);
|
|
right = findNearestRight(series, i);
|
|
if (!left) {
|
|
left = right;
|
|
}
|
|
if (!right) {
|
|
right = left;
|
|
}
|
|
series[i][0] = linearInterpolation(series[i][1], left, right);
|
|
}
|
|
}
|
|
return series;
|
|
}
|
|
|
|
function linearInterpolation(timestamp, left, right) {
|
|
if (left[1] === right[1]) {
|
|
return (left[0] + right[0]) / 2;
|
|
} else {
|
|
return (left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]));
|
|
}
|
|
}
|
|
|
|
function findNearestRight(series, pointIndex) {
|
|
for (var i = pointIndex; i < series.length; i++) {
|
|
if (series[i][0] !== null) {
|
|
return series[i];
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
function findNearestLeft(series, pointIndex) {
|
|
for (var i = pointIndex; i > 0; i--) {
|
|
if (series[i][0] !== null) {
|
|
return series[i];
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
function flattenDatapoints(datapoints) {
|
|
const depth = utils.getArrayDepth(datapoints);
|
|
if (depth <= 2) {
|
|
// Don't process if datapoints already flattened
|
|
return datapoints;
|
|
}
|
|
return _.flatten(datapoints);
|
|
}
|
|
|
|
////////////
|
|
// Export //
|
|
////////////
|
|
|
|
const exportedFunctions = {
|
|
downsample,
|
|
groupBy,
|
|
groupBy_perf,
|
|
groupByRange,
|
|
sumSeries,
|
|
scale,
|
|
offset,
|
|
scale_perf,
|
|
delta,
|
|
rate,
|
|
simpleMovingAverage,
|
|
expMovingAverage,
|
|
SUM,
|
|
COUNT,
|
|
AVERAGE,
|
|
MIN,
|
|
MAX,
|
|
MEDIAN,
|
|
PERCENTILE,
|
|
sortByTime,
|
|
flattenDatapoints,
|
|
};
|
|
|
|
export default exportedFunctions;
|