177 lines
5.1 KiB
JavaScript
177 lines
5.1 KiB
JavaScript
'use strict';
|
|
|
|
System.register(['lodash', './utils', './timeseries'], function (_export, _context) {
|
|
"use strict";
|
|
|
|
var _, utils, ts, downsampleSeries, groupBy, groupBy_exported, sumSeries, delta, rate, scale, simpleMovingAverage, expMovingAverage, SUM, COUNT, AVERAGE, MIN, MAX, MEDIAN, metricFunctions, aggregationFunctions;
|
|
|
|
function limit(order, n, orderByFunc, timeseries) {
|
|
var orderByCallback = aggregationFunctions[orderByFunc];
|
|
var sortByIteratee = function sortByIteratee(ts) {
|
|
var values = _.map(ts.datapoints, function (point) {
|
|
return point[0];
|
|
});
|
|
return orderByCallback(values);
|
|
};
|
|
var sortedTimeseries = _.sortBy(timeseries, sortByIteratee);
|
|
if (order === 'bottom') {
|
|
return sortedTimeseries.slice(0, n);
|
|
} else {
|
|
return sortedTimeseries.slice(-n);
|
|
}
|
|
}
|
|
|
|
function setAlias(alias, timeseries) {
|
|
timeseries.target = alias;
|
|
return timeseries;
|
|
}
|
|
|
|
function replaceAlias(regexp, newAlias, timeseries) {
|
|
var pattern = void 0;
|
|
if (utils.isRegex(regexp)) {
|
|
pattern = utils.buildRegex(regexp);
|
|
} else {
|
|
pattern = regexp;
|
|
}
|
|
|
|
var alias = timeseries.target.replace(pattern, newAlias);
|
|
timeseries.target = alias;
|
|
return timeseries;
|
|
}
|
|
|
|
function setAliasByRegex(alias, timeseries) {
|
|
timeseries.target = extractText(timeseries.target, alias);
|
|
return timeseries;
|
|
}
|
|
|
|
function extractText(str, pattern) {
|
|
var extractPattern = new RegExp(pattern);
|
|
var extractedValue = extractPattern.exec(str);
|
|
extractedValue = extractedValue[0];
|
|
return extractedValue;
|
|
}
|
|
|
|
function groupByWrapper(interval, groupFunc, datapoints) {
|
|
var groupByCallback = aggregationFunctions[groupFunc];
|
|
return groupBy(datapoints, interval, groupByCallback);
|
|
}
|
|
|
|
function aggregateByWrapper(interval, aggregateFunc, datapoints) {
|
|
// Flatten all points in frame and then just use groupBy()
|
|
var flattenedPoints = _.flatten(datapoints, true);
|
|
var groupByCallback = aggregationFunctions[aggregateFunc];
|
|
return groupBy(flattenedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function aggregateWrapper(groupByCallback, interval, datapoints) {
|
|
var flattenedPoints = _.flatten(datapoints, true);
|
|
return groupBy(flattenedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function timeShift(interval, range) {
|
|
var shift = utils.parseTimeShiftInterval(interval) / 1000;
|
|
return _.map(range, function (time) {
|
|
return time - shift;
|
|
});
|
|
}
|
|
|
|
function unShiftTimeSeries(interval, datapoints) {
|
|
var unshift = utils.parseTimeShiftInterval(interval);
|
|
return _.map(datapoints, function (dp) {
|
|
return [dp[0], dp[1] + unshift];
|
|
});
|
|
}
|
|
|
|
return {
|
|
setters: [function (_lodash) {
|
|
_ = _lodash.default;
|
|
}, function (_utils) {
|
|
utils = _utils;
|
|
}, function (_timeseries) {
|
|
ts = _timeseries.default;
|
|
}],
|
|
execute: function () {
|
|
downsampleSeries = ts.downsample;
|
|
groupBy = ts.groupBy_perf;
|
|
|
|
groupBy_exported = function groupBy_exported(interval, groupFunc, datapoints) {
|
|
return groupBy(datapoints, interval, groupFunc);
|
|
};
|
|
|
|
sumSeries = ts.sumSeries;
|
|
delta = ts.delta;
|
|
rate = ts.rate;
|
|
|
|
scale = function scale(factor, datapoints) {
|
|
return ts.scale_perf(datapoints, factor);
|
|
};
|
|
|
|
simpleMovingAverage = function simpleMovingAverage(n, datapoints) {
|
|
return ts.simpleMovingAverage(datapoints, n);
|
|
};
|
|
|
|
expMovingAverage = function expMovingAverage(a, datapoints) {
|
|
return ts.expMovingAverage(datapoints, a);
|
|
};
|
|
|
|
SUM = ts.SUM;
|
|
COUNT = ts.COUNT;
|
|
AVERAGE = ts.AVERAGE;
|
|
MIN = ts.MIN;
|
|
MAX = ts.MAX;
|
|
MEDIAN = ts.MEDIAN;
|
|
metricFunctions = {
|
|
groupBy: groupByWrapper,
|
|
scale: scale,
|
|
delta: delta,
|
|
rate: rate,
|
|
simpleMovingAverage: simpleMovingAverage,
|
|
expMovingAverage: expMovingAverage,
|
|
aggregateBy: aggregateByWrapper,
|
|
average: _.partial(aggregateWrapper, AVERAGE),
|
|
min: _.partial(aggregateWrapper, MIN),
|
|
max: _.partial(aggregateWrapper, MAX),
|
|
median: _.partial(aggregateWrapper, MEDIAN),
|
|
sum: _.partial(aggregateWrapper, SUM),
|
|
count: _.partial(aggregateWrapper, COUNT),
|
|
sumSeries: sumSeries,
|
|
top: _.partial(limit, 'top'),
|
|
bottom: _.partial(limit, 'bottom'),
|
|
timeShift: timeShift,
|
|
setAlias: setAlias,
|
|
setAliasByRegex: setAliasByRegex,
|
|
replaceAlias: replaceAlias
|
|
};
|
|
aggregationFunctions = {
|
|
avg: AVERAGE,
|
|
min: MIN,
|
|
max: MAX,
|
|
median: MEDIAN,
|
|
sum: SUM,
|
|
count: COUNT
|
|
};
|
|
|
|
_export('default', {
|
|
downsampleSeries: downsampleSeries,
|
|
groupBy: groupBy_exported,
|
|
AVERAGE: AVERAGE,
|
|
MIN: MIN,
|
|
MAX: MAX,
|
|
MEDIAN: MEDIAN,
|
|
SUM: SUM,
|
|
COUNT: COUNT,
|
|
unShiftTimeSeries: unShiftTimeSeries,
|
|
|
|
get aggregationFunctions() {
|
|
return aggregationFunctions;
|
|
},
|
|
|
|
get metricFunctions() {
|
|
return metricFunctions;
|
|
}
|
|
});
|
|
}
|
|
};
|
|
});
|
|
//# sourceMappingURL=dataProcessor.js.map
|