Files
grafana-zabbix/src/datasource-zabbix/zabbixDBConnector.js
2017-10-17 19:36:24 +03:00

280 lines
8.6 KiB
JavaScript

import angular from 'angular';
import _ from 'lodash';
const DEFAULT_QUERY_LIMIT = 10000;
const HISTORY_TO_TABLE_MAP = {
'0': 'history',
'1': 'history_str',
'2': 'history_log',
'3': 'history_uint',
'4': 'history_text'
};
const TREND_TO_TABLE_MAP = {
'0': 'trends',
'3': 'trends_uint'
};
const consolidateByFunc = {
'avg': 'AVG',
'min': 'MIN',
'max': 'MAX',
'sum': 'SUM',
'count': 'COUNT'
};
const consolidateByTrendColumns = {
'avg': 'value_avg',
'min': 'value_min',
'max': 'value_max'
};
/** @ngInject */
function ZabbixDBConnectorFactory(datasourceSrv, backendSrv) {
class ZabbixDBConnector {
constructor(sqlDataSourceId, options = {}) {
let {limit} = options;
this.sqlDataSourceId = sqlDataSourceId;
this.limit = limit || DEFAULT_QUERY_LIMIT;
this.loadSQLDataSource(sqlDataSourceId);
}
/**
* Try to load DS with given id to check it's exist.
* @param {*} datasourceId ID of SQL data source
*/
loadSQLDataSource(datasourceId) {
let ds = _.find(datasourceSrv.getAll(), {'id': datasourceId});
if (ds) {
return datasourceSrv.loadDatasource(ds.name)
.then(ds => {
this.sqlDataSourceType = ds.meta.id;
return ds;
});
} else {
return Promise.reject(`SQL Data Source with ID ${datasourceId} not found`);
}
}
/**
* Try to invoke test query for one of Zabbix database tables.
*/
testSQLDataSource() {
let testQuery = TEST_MYSQL_QUERY;
if (this.sqlDataSourceType === 'postgres') {
testQuery = TEST_POSTGRES_QUERY;
}
return this.invokeSQLQuery(testQuery);
}
getHistory(items, timeFrom, timeTill, options) {
let {intervalMs, consolidateBy} = options;
let intervalSec = Math.ceil(intervalMs / 1000);
consolidateBy = consolidateBy || 'avg';
let aggFunction = consolidateByFunc[consolidateBy];
// Group items by value type and perform request for each value type
let grouped_items = _.groupBy(items, 'value_type');
let promises = _.map(grouped_items, (items, value_type) => {
let itemids = _.map(items, 'itemid').join(', ');
let table = HISTORY_TO_TABLE_MAP[value_type];
let dialect = this.sqlDataSourceType;
let query = buildSQLHistoryQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, dialect);
query = compactSQLQuery(query);
return this.invokeSQLQuery(query);
});
return Promise.all(promises).then(results => {
return _.flatten(results);
});
}
getTrends(items, timeFrom, timeTill, options) {
let {intervalMs, consolidateBy} = options;
let intervalSec = Math.ceil(intervalMs / 1000);
consolidateBy = consolidateBy || 'avg';
let aggFunction = consolidateByFunc[consolidateBy];
// Group items by value type and perform request for each value type
let grouped_items = _.groupBy(items, 'value_type');
let promises = _.map(grouped_items, (items, value_type) => {
let itemids = _.map(items, 'itemid').join(', ');
let table = TREND_TO_TABLE_MAP[value_type];
let valueColumn = _.includes(['avg', 'min', 'max'], consolidateBy) ? consolidateBy : 'avg';
valueColumn = consolidateByTrendColumns[valueColumn];
let dialect = this.sqlDataSourceType;
let query = buildSQLTrendsQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, valueColumn, dialect);
query = compactSQLQuery(query);
return this.invokeSQLQuery(query);
});
return Promise.all(promises).then(results => {
return _.flatten(results);
});
}
handleGrafanaTSResponse(history, items, addHostName = true) {
return convertGrafanaTSResponse(history, items, addHostName);
}
invokeSQLQuery(query) {
let queryDef = {
refId: 'A',
format: 'time_series',
datasourceId: this.sqlDataSourceId,
rawSql: query,
maxDataPoints: this.limit
};
return backendSrv.datasourceRequest({
url: '/api/tsdb/query',
method: 'POST',
data: {
queries: [queryDef],
}
})
.then(response => {
let results = response.data.results;
if (results['A']) {
return results['A'].series;
} else {
return null;
}
});
}
}
return ZabbixDBConnector;
}
angular
.module('grafana.services')
.factory('ZabbixDBConnector', ZabbixDBConnectorFactory);
///////////////////////////////////////////////////////////////////////////////
function convertGrafanaTSResponse(time_series, items, addHostName) {
var hosts = _.uniqBy(_.flatten(_.map(items, 'hosts')), 'hostid'); //uniqBy is needed to deduplicate
let grafanaSeries = _.map(time_series, series => {
let itemid = series.name;
var item = _.find(items, {'itemid': itemid});
var alias = item.name;
if (_.keys(hosts).length > 1 && addHostName) { //only when actual multi hosts selected
var host = _.find(hosts, {'hostid': item.hostid});
alias = host.name + ": " + alias;
}
// zabbixCachingProxy deduplicates requests and returns one time series for equal queries.
// Clone is needed to prevent changing of series object shared between all targets.
let datapoints = _.cloneDeep(series.points);
return {
target: alias,
datapoints: datapoints
};
});
return _.sortBy(grafanaSeries, 'target');
}
function compactSQLQuery(query) {
return query.replace(/\s+/g, ' ');
}
function buildSQLHistoryQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, dialect = 'mysql') {
if (dialect === 'postgres') {
return buildPostgresHistoryQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction);
} else {
return buildMysqlHistoryQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction);
}
}
function buildSQLTrendsQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, valueColumn, dialect = 'mysql') {
if (dialect === 'postgres') {
return buildPostgresTrendsQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, valueColumn);
} else {
return buildMysqlTrendsQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, valueColumn);
}
}
///////////
// MySQL //
///////////
function buildMysqlHistoryQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction) {
let time_expression = `clock DIV ${intervalSec} * ${intervalSec}`;
let query = `
SELECT itemid AS metric, ${time_expression} AS time_sec, ${aggFunction}(value) AS value
FROM ${table}
WHERE itemid IN (${itemids})
AND clock > ${timeFrom} AND clock < ${timeTill}
GROUP BY ${time_expression}, metric
ORDER BY time_sec ASC
`;
return query;
}
function buildMysqlTrendsQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, valueColumn) {
let time_expression = `clock DIV ${intervalSec} * ${intervalSec}`;
let query = `
SELECT itemid AS metric, ${time_expression} AS time_sec, ${aggFunction}(${valueColumn}) AS value
FROM ${table}
WHERE itemid IN (${itemids})
AND clock > ${timeFrom} AND clock < ${timeTill}
GROUP BY ${time_expression}, metric
ORDER BY time_sec ASC
`;
return query;
}
const TEST_MYSQL_QUERY = `SELECT itemid AS metric, clock AS time_sec, value_avg AS value FROM trends_uint LIMIT 1`;
////////////////
// PostgreSQL //
////////////////
const itemid_format = 'FM99999999999999999999';
function buildPostgresHistoryQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction) {
let time_expression = `clock / ${intervalSec} * ${intervalSec}`;
let query = `
SELECT DISTINCT to_char(itemid, '${itemid_format}') AS metric,
${time_expression} AS time,
${aggFunction}(value) OVER (PARTITION BY clock / ${intervalSec}) AS value
FROM ${table}
WHERE itemid IN (${itemids})
AND clock > ${timeFrom} AND clock < ${timeTill}
GROUP BY metric, clock, value
ORDER BY time ASC
`;
return query;
}
function buildPostgresTrendsQuery(itemids, table, timeFrom, timeTill, intervalSec, aggFunction, valueColumn) {
let time_expression = `clock / ${intervalSec} * ${intervalSec}`;
let query = `
SELECT DISTINCT to_char(itemid, '${itemid_format}') AS metric,
${time_expression} AS time,
${aggFunction}(${valueColumn}) OVER (PARTITION BY clock / ${intervalSec}) AS value
FROM ${table}
WHERE itemid IN (${itemids})
AND clock > ${timeFrom} AND clock < ${timeTill}
GROUP BY metric, clock, ${valueColumn}
ORDER BY time ASC
`;
return query;
}
const TEST_POSTGRES_QUERY = `
SELECT to_char(itemid, '${itemid_format}') AS metric, clock AS time, value_avg AS value
FROM trends_uint LIMIT 1
`;