Files
grafana-zabbix/dist/test/datasource-zabbix/timeseries.js
2017-06-26 12:23:04 +03:00

361 lines
9.2 KiB
JavaScript

'use strict';
Object.defineProperty(exports, "__esModule", {
value: true
});
var _lodash = require('lodash');
var _lodash2 = _interopRequireDefault(_lodash);
var _utils = require('./utils');
var utils = _interopRequireWildcard(_utils);
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
/**
* timeseries.js
*
* This module contains functions for working with time series.
*
* datapoints - array of points where point is [value, timestamp]. In almost all cases (if other wasn't
* explicitly said) we assume datapoints are sorted by timestamp. Timestamp is the number of milliseconds
* since 1 January 1970 00:00:00 UTC.
*
*/
var POINT_VALUE = 0;
var POINT_TIMESTAMP = 1;
/**
* Downsample time series by using given function (avg, min, max).
*/
function downsample(datapoints, time_to, ms_interval, func) {
var downsampledSeries = [];
var timeWindow = {
from: time_to * 1000 - ms_interval,
to: time_to * 1000
};
var points_sum = 0;
var points_num = 0;
var value_avg = 0;
var frame = [];
for (var i = datapoints.length - 1; i >= 0; i -= 1) {
if (timeWindow.from < datapoints[i][1] && datapoints[i][1] <= timeWindow.to) {
points_sum += datapoints[i][0];
points_num++;
frame.push(datapoints[i][0]);
} else {
value_avg = points_num ? points_sum / points_num : 0;
if (func === "max") {
downsampledSeries.push([_lodash2.default.max(frame), timeWindow.to]);
} else if (func === "min") {
downsampledSeries.push([_lodash2.default.min(frame), timeWindow.to]);
}
// avg by default
else {
downsampledSeries.push([value_avg, timeWindow.to]);
}
// Shift time window
timeWindow.to = timeWindow.from;
timeWindow.from -= ms_interval;
points_sum = 0;
points_num = 0;
frame = [];
// Process point again
i++;
}
}
return downsampledSeries.reverse();
}
/**
* Group points by given time interval
* datapoints: [[<value>, <unixtime>], ...]
*/
function groupBy(datapoints, interval, groupByCallback) {
var ms_interval = utils.parseInterval(interval);
// Calculate frame timestamps
var frames = _lodash2.default.groupBy(datapoints, function (point) {
// Calculate time for group of points
return Math.floor(point[1] / ms_interval) * ms_interval;
});
// frame: { '<unixtime>': [[<value>, <unixtime>], ...] }
// return [{ '<unixtime>': <value> }, { '<unixtime>': <value> }, ...]
var grouped = _lodash2.default.mapValues(frames, function (frame) {
var points = _lodash2.default.map(frame, function (point) {
return point[0];
});
return groupByCallback(points);
});
// Convert points to Grafana format
return sortByTime(_lodash2.default.map(grouped, function (value, timestamp) {
return [Number(value), Number(timestamp)];
}));
}
function groupBy_perf(datapoints, interval, groupByCallback) {
var ms_interval = utils.parseInterval(interval);
var grouped_series = [];
var frame_values = [];
var frame_value = void 0;
var frame_ts = datapoints.length ? getPointTimeFrame(datapoints[0][POINT_TIMESTAMP], ms_interval) : 0;
var point_frame_ts = frame_ts;
var point = void 0;
for (var i = 0; i < datapoints.length; i++) {
point = datapoints[i];
point_frame_ts = getPointTimeFrame(point[POINT_TIMESTAMP], ms_interval);
if (point_frame_ts === frame_ts) {
frame_values.push(point[POINT_VALUE]);
} else {
frame_value = groupByCallback(frame_values);
grouped_series.push([frame_value, frame_ts]);
frame_ts = point_frame_ts;
frame_values = [point[POINT_VALUE]];
}
}
frame_value = groupByCallback(frame_values);
grouped_series.push([frame_value, frame_ts]);
return grouped_series;
}
/**
* Summarize set of time series into one.
* @param {datapoints[]} timeseries array of time series
*/
function sumSeries(timeseries) {
// Calculate new points for interpolation
var new_timestamps = _lodash2.default.uniq(_lodash2.default.map(_lodash2.default.flatten(timeseries, true), function (point) {
return point[1];
}));
new_timestamps = _lodash2.default.sortBy(new_timestamps);
var interpolated_timeseries = _lodash2.default.map(timeseries, function (series) {
var timestamps = _lodash2.default.map(series, function (point) {
return point[1];
});
var new_points = _lodash2.default.map(_lodash2.default.difference(new_timestamps, timestamps), function (timestamp) {
return [null, timestamp];
});
var new_series = series.concat(new_points);
return sortByTime(new_series);
});
_lodash2.default.each(interpolated_timeseries, interpolateSeries);
var new_timeseries = [];
var sum;
for (var i = new_timestamps.length - 1; i >= 0; i--) {
sum = 0;
for (var j = interpolated_timeseries.length - 1; j >= 0; j--) {
sum += interpolated_timeseries[j][i][0];
}
new_timeseries.push([sum, new_timestamps[i]]);
}
return sortByTime(new_timeseries);
}
function scale(datapoints, factor) {
return _lodash2.default.map(datapoints, function (point) {
return [point[0] * factor, point[1]];
});
}
function scale_perf(datapoints, factor) {
for (var i = 0; i < datapoints.length; i++) {
datapoints[i] = [datapoints[i][POINT_VALUE] * factor, datapoints[i][POINT_TIMESTAMP]];
}
return datapoints;
}
/**
* Simple delta. Calculate value delta between points.
* @param {*} datapoints
*/
function delta(datapoints) {
var newSeries = [];
var deltaValue = void 0;
for (var i = 1; i < datapoints.length; i++) {
deltaValue = datapoints[i][0] - datapoints[i - 1][0];
newSeries.push([deltaValue, datapoints[i][1]]);
}
return newSeries;
}
/**
* Calculates rate per second. Resistant to counter reset.
* @param {*} datapoints
*/
function rate(datapoints) {
var newSeries = [];
var point = void 0,
point_prev = void 0;
var valueDelta = 0;
var timeDelta = 0;
for (var i = 1; i < datapoints.length; i++) {
point = datapoints[i];
point_prev = datapoints[i - 1];
// Convert ms to seconds
timeDelta = (point[POINT_TIMESTAMP] - point_prev[POINT_TIMESTAMP]) / 1000;
// Handle counter reset - use previous value
if (point[POINT_VALUE] >= point_prev[POINT_VALUE]) {
valueDelta = (point[POINT_VALUE] - point_prev[POINT_VALUE]) / timeDelta;
}
newSeries.push([valueDelta, point[POINT_TIMESTAMP]]);
}
return newSeries;
}
function SUM(values) {
var sum = 0;
_lodash2.default.each(values, function (value) {
sum += value;
});
return sum;
}
function COUNT(values) {
return values.length;
}
function AVERAGE(values) {
var sum = 0;
_lodash2.default.each(values, function (value) {
sum += value;
});
return sum / values.length;
}
function MIN(values) {
return _lodash2.default.min(values);
}
function MAX(values) {
return _lodash2.default.max(values);
}
function MEDIAN(values) {
var sorted = _lodash2.default.sortBy(values);
return sorted[Math.floor(sorted.length / 2)];
}
///////////////////////
// Utility functions //
///////////////////////
/**
* For given point calculate corresponding time frame.
*
* |__*_|_*__|___*| -> |*___|*___|*___|
*
* @param {*} timestamp
* @param {*} ms_interval
*/
function getPointTimeFrame(timestamp, ms_interval) {
return Math.floor(timestamp / ms_interval) * ms_interval;
}
function sortByTime(series) {
return _lodash2.default.sortBy(series, function (point) {
return point[1];
});
}
/**
* Interpolate series with gaps
*/
function interpolateSeries(series) {
var left, right;
// Interpolate series
for (var i = series.length - 1; i >= 0; i--) {
if (!series[i][0]) {
left = findNearestLeft(series, series[i]);
right = findNearestRight(series, series[i]);
if (!left) {
left = right;
}
if (!right) {
right = left;
}
series[i][0] = linearInterpolation(series[i][1], left, right);
}
}
return series;
}
function linearInterpolation(timestamp, left, right) {
if (left[1] === right[1]) {
return (left[0] + right[0]) / 2;
} else {
return left[0] + (right[0] - left[0]) / (right[1] - left[1]) * (timestamp - left[1]);
}
}
function findNearestRight(series, point) {
var point_index = _lodash2.default.indexOf(series, point);
var nearestRight;
for (var i = point_index; i < series.length; i++) {
if (series[i][0] !== null) {
return series[i];
}
}
return nearestRight;
}
function findNearestLeft(series, point) {
var point_index = _lodash2.default.indexOf(series, point);
var nearestLeft;
for (var i = point_index; i > 0; i--) {
if (series[i][0] !== null) {
return series[i];
}
}
return nearestLeft;
}
////////////
// Export //
////////////
var exportedFunctions = {
downsample: downsample,
groupBy: groupBy,
groupBy_perf: groupBy_perf,
sumSeries: sumSeries,
scale: scale,
scale_perf: scale_perf,
delta: delta,
rate: rate,
SUM: SUM,
COUNT: COUNT,
AVERAGE: AVERAGE,
MIN: MIN,
MAX: MAX,
MEDIAN: MEDIAN
};
exports.default = exportedFunctions;