Files
grafana-zabbix/pkg/datasource/functions.go
Alexander Zobnin 24e9129fbe Implement sortSeries
2021-05-27 12:57:09 +03:00

287 lines
7.7 KiB
Go

package datasource
import (
"fmt"
"strconv"
"github.com/alexanderzobnin/grafana-zabbix/pkg/gtime"
"github.com/alexanderzobnin/grafana-zabbix/pkg/timeseries"
)
const RANGE_VARIABLE_VALUE = "range_series"
var (
errFunctionNotSupported = func(name string) error {
return fmt.Errorf("function not supported: %s", name)
}
errParsingFunctionParam = func(err error) error {
return fmt.Errorf("failed to parse function param: %s", err)
}
)
func MustString(p QueryFunctionParam) (string, error) {
if pStr, ok := p.(string); ok {
return pStr, nil
}
return "", fmt.Errorf("failed to convert value to string: %v", p)
}
func MustFloat64(p QueryFunctionParam) (float64, error) {
if pFloat, ok := p.(float64); ok {
return pFloat, nil
} else if pStr, ok := p.(string); ok {
if pFloat, err := strconv.ParseFloat(pStr, 64); err == nil {
return pFloat, nil
}
}
return 0, fmt.Errorf("failed to convert value to float: %v", p)
}
type DataProcessingFunc = func(series timeseries.TimeSeries, params ...interface{}) (timeseries.TimeSeries, error)
type AggDataProcessingFunc = func(series []*timeseries.TimeSeriesData, params ...interface{}) ([]*timeseries.TimeSeriesData, error)
var seriesFuncMap map[string]DataProcessingFunc
var aggFuncMap map[string]AggDataProcessingFunc
var filterFuncMap map[string]AggDataProcessingFunc
var frontendFuncMap map[string]bool
func init() {
seriesFuncMap = map[string]DataProcessingFunc{
"groupBy": applyGroupBy,
"scale": applyScale,
"offset": applyOffset,
"percentile": applyPercentile,
}
aggFuncMap = map[string]AggDataProcessingFunc{
"aggregateBy": applyAggregateBy,
"sumSeries": applySumSeries,
"percentileAgg": applyPercentileAgg,
}
filterFuncMap = map[string]AggDataProcessingFunc{
"top": applyTop,
"bottom": applyBottom,
"sortSeries": applySortSeries,
}
// Functions processing on the frontend
frontendFuncMap = map[string]bool{
"setAlias": true,
"replaceAlias": true,
"setAliasByRegex": true,
}
}
func applyFunctions(series []*timeseries.TimeSeriesData, functions []QueryFunction) ([]*timeseries.TimeSeriesData, error) {
for _, f := range functions {
if applyFunc, ok := seriesFuncMap[f.Def.Name]; ok {
for _, s := range series {
result, err := applyFunc(s.TS, f.Params...)
if err != nil {
return nil, err
}
s.TS = result
}
} else if applyAggFunc, ok := aggFuncMap[f.Def.Name]; ok {
result, err := applyAggFunc(series, f.Params...)
if err != nil {
return nil, err
}
series = result
} else if applyFilterFunc, ok := filterFuncMap[f.Def.Name]; ok {
result, err := applyFilterFunc(series, f.Params...)
if err != nil {
return nil, err
}
series = result
} else if _, ok := frontendFuncMap[f.Def.Name]; ok {
continue
} else {
err := errFunctionNotSupported(f.Def.Name)
return series, err
}
}
return series, nil
}
func applyGroupBy(series timeseries.TimeSeries, params ...interface{}) (timeseries.TimeSeries, error) {
pInterval, err := MustString(params[0])
pAgg, err := MustString(params[1])
if err != nil {
return nil, errParsingFunctionParam(err)
}
aggFunc := getAggFunc(pAgg)
if pInterval == RANGE_VARIABLE_VALUE {
s := series.GroupByRange(aggFunc)
return s, nil
}
interval, err := gtime.ParseInterval(pInterval)
if err != nil {
return nil, errParsingFunctionParam(err)
}
s := series.GroupBy(interval, aggFunc)
return s, nil
}
func applyPercentile(series timeseries.TimeSeries, params ...interface{}) (timeseries.TimeSeries, error) {
pInterval, err := MustString(params[0])
percentile, err := MustFloat64(params[1])
if err != nil {
return nil, errParsingFunctionParam(err)
}
aggFunc := timeseries.AggPercentile(percentile)
if pInterval == RANGE_VARIABLE_VALUE {
s := series.GroupByRange(aggFunc)
return s, nil
}
interval, err := gtime.ParseInterval(pInterval)
if err != nil {
return nil, errParsingFunctionParam(err)
}
s := series.GroupBy(interval, aggFunc)
return s, nil
}
func applyScale(series timeseries.TimeSeries, params ...interface{}) (timeseries.TimeSeries, error) {
pFactor, err := MustString(params[0])
if err != nil {
return nil, errParsingFunctionParam(err)
}
factor, err := strconv.ParseFloat(pFactor, 64)
if err != nil {
return nil, errParsingFunctionParam(err)
}
transformFunc := timeseries.TransformScale(factor)
return series.Transform(transformFunc), nil
}
func applyOffset(series timeseries.TimeSeries, params ...interface{}) (timeseries.TimeSeries, error) {
offset, err := MustFloat64(params[0])
if err != nil {
return nil, errParsingFunctionParam(err)
}
transformFunc := timeseries.TransformOffset(offset)
return series.Transform(transformFunc), nil
}
func applyAggregateBy(series []*timeseries.TimeSeriesData, params ...interface{}) ([]*timeseries.TimeSeriesData, error) {
pInterval, err := MustString(params[0])
pAgg, err := MustString(params[1])
if err != nil {
return nil, errParsingFunctionParam(err)
}
interval, err := gtime.ParseInterval(pInterval)
if err != nil {
return nil, errParsingFunctionParam(err)
}
aggFunc := getAggFunc(pAgg)
aggregatedSeries := timeseries.AggregateBy(series, interval, aggFunc)
aggregatedSeries.Meta.Name = fmt.Sprintf("aggregateBy(%s, %s)", pInterval, pAgg)
return []*timeseries.TimeSeriesData{aggregatedSeries}, nil
}
func applySumSeries(series []*timeseries.TimeSeriesData, params ...interface{}) ([]*timeseries.TimeSeriesData, error) {
sum := timeseries.SumSeries(series)
sum.Meta.Name = "sumSeries()"
return []*timeseries.TimeSeriesData{sum}, nil
}
func applyPercentileAgg(series []*timeseries.TimeSeriesData, params ...interface{}) ([]*timeseries.TimeSeriesData, error) {
pInterval, err := MustString(params[0])
percentile, err := MustFloat64(params[1])
if err != nil {
return nil, errParsingFunctionParam(err)
}
interval, err := gtime.ParseInterval(pInterval)
if err != nil {
return nil, errParsingFunctionParam(err)
}
aggFunc := timeseries.AggPercentile(percentile)
aggregatedSeries := timeseries.AggregateBy(series, interval, aggFunc)
aggregatedSeries.Meta.Name = fmt.Sprintf("percentileAgg(%s, %v)", pInterval, percentile)
return []*timeseries.TimeSeriesData{aggregatedSeries}, nil
}
func applyTop(series []*timeseries.TimeSeriesData, params ...interface{}) ([]*timeseries.TimeSeriesData, error) {
n, err := MustFloat64(params[0])
pAgg, err := MustString(params[1])
if err != nil {
return nil, errParsingFunctionParam(err)
}
aggFunc := getAggFunc(pAgg)
filteredSeries := timeseries.Filter(series, int(n), "top", aggFunc)
return filteredSeries, nil
}
func applyBottom(series []*timeseries.TimeSeriesData, params ...interface{}) ([]*timeseries.TimeSeriesData, error) {
n, err := MustFloat64(params[0])
pAgg, err := MustString(params[1])
if err != nil {
return nil, errParsingFunctionParam(err)
}
aggFunc := getAggFunc(pAgg)
filteredSeries := timeseries.Filter(series, int(n), "bottom", aggFunc)
return filteredSeries, nil
}
func applySortSeries(series []*timeseries.TimeSeriesData, params ...interface{}) ([]*timeseries.TimeSeriesData, error) {
order, err := MustString(params[0])
if err != nil {
return nil, errParsingFunctionParam(err)
}
aggFunc := timeseries.AggAvg
sorted := timeseries.SortBy(series, order, aggFunc)
return sorted, nil
}
func getAggFunc(agg string) timeseries.AggFunc {
switch agg {
case "avg":
return timeseries.AggAvg
case "max":
return timeseries.AggMax
case "min":
return timeseries.AggMin
case "sum":
return timeseries.AggSum
case "median":
return timeseries.AggMedian
case "count":
return timeseries.AggCount
case "first":
return timeseries.AggFirst
case "last":
return timeseries.AggLast
default:
return timeseries.AggAvg
}
}
func sortSeriesPoints(series []*timeseries.TimeSeriesData) {
for _, s := range series {
s.TS.Sort()
}
}