263 lines
7.4 KiB
TypeScript
263 lines
7.4 KiB
TypeScript
import _ from 'lodash';
|
|
// Available in 7.0
|
|
// import { getTemplateSrv } from '@grafana/runtime';
|
|
import * as utils from './utils';
|
|
import ts, { groupBy_perf as groupBy } from './timeseries';
|
|
import { getTemplateSrv } from '@grafana/runtime';
|
|
import { DataFrame, Field, FieldType, TIME_SERIES_VALUE_FIELD_NAME } from '@grafana/data';
|
|
|
|
const SUM = ts.SUM;
|
|
const COUNT = ts.COUNT;
|
|
const AVERAGE = ts.AVERAGE;
|
|
const MIN = ts.MIN;
|
|
const MAX = ts.MAX;
|
|
const MEDIAN = ts.MEDIAN;
|
|
const PERCENTILE = ts.PERCENTILE;
|
|
|
|
const downsampleSeries = ts.downsample;
|
|
const groupBy_exported = (interval, groupFunc, datapoints) => groupBy(datapoints, interval, groupFunc);
|
|
const sumSeries = ts.sumSeries;
|
|
const delta = ts.delta;
|
|
const rate = ts.rate;
|
|
const scale = (factor, datapoints) => ts.scale_perf(datapoints, factor);
|
|
const offset = (delta, datapoints) => ts.offset(datapoints, delta);
|
|
const simpleMovingAverage = (n, datapoints) => ts.simpleMovingAverage(datapoints, n);
|
|
const expMovingAverage = (a, datapoints) => ts.expMovingAverage(datapoints, a);
|
|
const percentile = (interval, n, datapoints) => groupBy(datapoints, interval, _.partial(PERCENTILE, n));
|
|
|
|
function limit(order, n, orderByFunc, timeseries) {
|
|
const orderByCallback = aggregationFunctions[orderByFunc];
|
|
const sortByIteratee = (ts) => {
|
|
const values = _.map(ts.datapoints, (point) => {
|
|
return point[0];
|
|
});
|
|
return orderByCallback(values);
|
|
};
|
|
const sortedTimeseries = _.sortBy(timeseries, sortByIteratee);
|
|
if (order === 'bottom') {
|
|
return sortedTimeseries.slice(0, n);
|
|
} else {
|
|
return sortedTimeseries.slice(-n);
|
|
}
|
|
}
|
|
|
|
function removeAboveValue(n, datapoints) {
|
|
return _.map(datapoints, point => {
|
|
return [
|
|
(point[0] > n) ? null : point[0],
|
|
point[1]
|
|
];
|
|
});
|
|
}
|
|
|
|
function removeBelowValue(n, datapoints) {
|
|
return _.map(datapoints, point => {
|
|
return [
|
|
(point[0] < n) ? null : point[0],
|
|
point[1]
|
|
];
|
|
});
|
|
}
|
|
|
|
function transformNull(n, datapoints) {
|
|
return _.map(datapoints, point => {
|
|
return [
|
|
(point[0] !== null) ? point[0] : n,
|
|
point[1]
|
|
];
|
|
});
|
|
}
|
|
|
|
function sortSeries(direction, timeseries: any[]) {
|
|
return _.orderBy(timeseries, [ts => {
|
|
return ts.target.toLowerCase();
|
|
}], direction);
|
|
}
|
|
|
|
function setAlias(alias: string, frame: DataFrame) {
|
|
if (frame.fields?.length <= 2) {
|
|
const valueFileld = frame.fields.find(f => f.name === TIME_SERIES_VALUE_FIELD_NAME);
|
|
if (valueFileld?.state?.scopedVars) {
|
|
alias = getTemplateSrv().replace(alias, valueFileld?.state?.scopedVars);
|
|
}
|
|
frame.name = alias;
|
|
return frame;
|
|
}
|
|
|
|
for (let fieldIndex = 0; fieldIndex < frame.fields.length; fieldIndex++) {
|
|
const field = frame.fields[fieldIndex];
|
|
if (field.type !== FieldType.time) {
|
|
if (field?.state?.scopedVars) {
|
|
alias = getTemplateSrv().replace(alias, field?.state?.scopedVars);
|
|
}
|
|
field.name = alias;
|
|
}
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
function replaceAlias(regexp: string, newAlias: string, frame: DataFrame) {
|
|
let pattern: string | RegExp;
|
|
if (utils.isRegex(regexp)) {
|
|
pattern = utils.buildRegex(regexp);
|
|
} else {
|
|
pattern = regexp;
|
|
}
|
|
|
|
if (frame.fields?.length <= 2) {
|
|
let alias = frame.name.replace(pattern, newAlias);
|
|
const valueFileld = frame.fields.find(f => f.name === TIME_SERIES_VALUE_FIELD_NAME);
|
|
if (valueFileld?.state?.scopedVars) {
|
|
alias = getTemplateSrv().replace(alias, valueFileld?.state?.scopedVars);
|
|
}
|
|
frame.name = alias;
|
|
return frame;
|
|
}
|
|
|
|
for (const field of frame.fields) {
|
|
if (field.type !== FieldType.time) {
|
|
let alias = field.name.replace(pattern, newAlias);
|
|
if (field?.state?.scopedVars) {
|
|
alias = getTemplateSrv().replace(alias, field?.state?.scopedVars);
|
|
}
|
|
field.name = alias;
|
|
}
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
function setAliasByRegex(alias: string, frame: DataFrame) {
|
|
if (frame.fields?.length <= 2) {
|
|
try {
|
|
frame.name = extractText(frame.name, alias);
|
|
} catch (error) {
|
|
console.error('Failed to apply RegExp:', error?.message || error);
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
for (const field of frame.fields) {
|
|
if (field.type !== FieldType.time) {
|
|
try {
|
|
field.name = extractText(field.name, alias);
|
|
} catch (error) {
|
|
console.error('Failed to apply RegExp:', error?.message || error);
|
|
}
|
|
}
|
|
}
|
|
|
|
return frame;
|
|
}
|
|
|
|
function extractText(str: string, pattern: string) {
|
|
const extractPattern = new RegExp(pattern);
|
|
const extractedValue = extractPattern.exec(str);
|
|
return extractedValue[0];
|
|
}
|
|
|
|
function groupByWrapper(interval, groupFunc, datapoints) {
|
|
const groupByCallback = aggregationFunctions[groupFunc];
|
|
return groupBy(datapoints, interval, groupByCallback);
|
|
}
|
|
|
|
function aggregateByWrapper(interval, aggregateFunc, datapoints) {
|
|
// Flatten all points in frame and then just use groupBy()
|
|
const flattenedPoints = ts.flattenDatapoints(datapoints);
|
|
// groupBy_perf works with sorted series only
|
|
const sortedPoints = ts.sortByTime(flattenedPoints);
|
|
const groupByCallback = aggregationFunctions[aggregateFunc];
|
|
return groupBy(sortedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function aggregateWrapper(groupByCallback, interval, datapoints) {
|
|
const flattenedPoints = ts.flattenDatapoints(datapoints);
|
|
// groupBy_perf works with sorted series only
|
|
const sortedPoints = ts.sortByTime(flattenedPoints);
|
|
return groupBy(sortedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function percentileAgg(interval, n, datapoints) {
|
|
const flattenedPoints = ts.flattenDatapoints(datapoints);
|
|
// groupBy_perf works with sorted series only
|
|
const sortedPoints = ts.sortByTime(flattenedPoints);
|
|
const groupByCallback = _.partial(PERCENTILE, n);
|
|
return groupBy(sortedPoints, interval, groupByCallback);
|
|
}
|
|
|
|
function timeShift(interval, range) {
|
|
const shift = utils.parseTimeShiftInterval(interval) / 1000;
|
|
return _.map(range, time => {
|
|
return time - shift;
|
|
});
|
|
}
|
|
|
|
function unShiftTimeSeries(interval, datapoints) {
|
|
const unshift = utils.parseTimeShiftInterval(interval);
|
|
return _.map(datapoints, dp => {
|
|
return [
|
|
dp[0],
|
|
dp[1] + unshift
|
|
];
|
|
});
|
|
}
|
|
|
|
const metricFunctions = {
|
|
groupBy: groupByWrapper,
|
|
scale: scale,
|
|
offset: offset,
|
|
delta: delta,
|
|
rate: rate,
|
|
movingAverage: simpleMovingAverage,
|
|
exponentialMovingAverage: expMovingAverage,
|
|
percentile: percentile,
|
|
transformNull: transformNull,
|
|
aggregateBy: aggregateByWrapper,
|
|
// Predefined aggs
|
|
percentileAgg: percentileAgg,
|
|
average: _.partial(aggregateWrapper, AVERAGE),
|
|
min: _.partial(aggregateWrapper, MIN),
|
|
max: _.partial(aggregateWrapper, MAX),
|
|
median: _.partial(aggregateWrapper, MEDIAN),
|
|
sum: _.partial(aggregateWrapper, SUM),
|
|
count: _.partial(aggregateWrapper, COUNT),
|
|
sumSeries: sumSeries,
|
|
removeAboveValue: removeAboveValue,
|
|
removeBelowValue: removeBelowValue,
|
|
top: _.partial(limit, 'top'),
|
|
bottom: _.partial(limit, 'bottom'),
|
|
sortSeries: sortSeries,
|
|
timeShift: timeShift,
|
|
setAlias: setAlias,
|
|
setAliasByRegex: setAliasByRegex,
|
|
replaceAlias: replaceAlias
|
|
};
|
|
|
|
const aggregationFunctions = {
|
|
avg: AVERAGE,
|
|
min: MIN,
|
|
max: MAX,
|
|
median: MEDIAN,
|
|
sum: SUM,
|
|
count: COUNT
|
|
};
|
|
|
|
export default {
|
|
downsampleSeries: downsampleSeries,
|
|
groupBy: groupBy_exported,
|
|
AVERAGE: AVERAGE,
|
|
MIN: MIN,
|
|
MAX: MAX,
|
|
MEDIAN: MEDIAN,
|
|
SUM: SUM,
|
|
COUNT: COUNT,
|
|
unShiftTimeSeries: unShiftTimeSeries,
|
|
|
|
get aggregationFunctions() {
|
|
return aggregationFunctions;
|
|
},
|
|
|
|
get metricFunctions() {
|
|
return metricFunctions;
|
|
}
|
|
};
|