Files
grafana-zabbix/pkg/timeseries/moving_average.go
2022-04-29 14:44:26 +03:00

132 lines
3.8 KiB
Go

package timeseries
import "math"
func (ts TimeSeries) SimpleMovingAverage(n int) TimeSeries {
if ts.Len() == 0 {
return ts
}
sma := []TimePoint{ts[0]}
// It's not possible to calculate MA if n greater than number of points
n = int(math.Min(float64(ts.Len()), float64(n)))
// Initial window, use simple moving average
windowCount := 0
var windowSum float64 = 0
for i := n; i > 0; i-- {
point := ts[n-i]
if point.Value != nil {
windowSum += *point.Value
windowCount++
}
}
if windowCount > 0 {
windowAvg := windowSum / float64(windowCount)
// Actually, we should set timestamp from datapoints[n-1] and start calculation of SMA from n.
// But in order to start SMA from first point (not from Nth) we should expand time range and request N additional
// points outside left side of range. We can't do that, so this trick is used for pretty view of first N points.
// We calculate AVG for first N points, but then start from 2nd point, not from Nth. In general, it means we
// assume that previous N points (0-N, 0-(N-1), ..., 0-1) have the same average value as a first N points.
sma[0] = TimePoint{Time: ts[0].Time, Value: &windowAvg}
}
for i := 1; i < ts.Len(); i++ {
leftEdge := int(math.Max(0, float64(i-n)))
point := ts[i]
leftPoint := ts[leftEdge]
// Remove left value
if leftPoint.Value != nil {
if windowCount > 0 {
if i < n {
windowSum -= windowSum / float64(windowCount)
} else {
windowSum -= *leftPoint.Value
}
windowCount--
}
}
// Insert next value
if point.Value != nil {
windowSum += *point.Value
windowCount++
windowAvg := windowSum / float64(windowCount)
value := windowAvg
sma = append(sma, TimePoint{Time: point.Time, Value: &value})
} else {
sma = append(sma, TimePoint{Time: point.Time, Value: nil})
}
}
return sma
}
func (ts TimeSeries) ExponentialMovingAverage(an float64) TimeSeries {
if ts.Len() == 0 {
return ts
}
// It's not possible to calculate MA if n greater than number of points
an = math.Min(float64(ts.Len()), an)
// alpha coefficient should be between 0 and 1. If provided n <= 1, then use it as alpha directly. Otherwise, it's a
// number of points in the window and alpha calculted from this information.
var a float64
var n int
ema := []TimePoint{ts[0]}
var emaCurrent float64
var emaPrev float64 = 0
if ts[0].Value != nil {
emaPrev = *ts[0].Value
}
if an > 1 {
// Calculate a from window size
a = 2 / (an + 1)
n = int(an)
// Initial window, use simple moving average
windowCount := 0
var windowSum float64 = 0
for i := n; i > 0; i-- {
point := ts[n-i]
if point.Value != nil {
windowSum += *point.Value
windowCount++
}
}
if windowCount > 0 {
windowAvg := windowSum / float64(windowCount)
// Actually, we should set timestamp from datapoints[n-1] and start calculation of EMA from n.
// But in order to start EMA from first point (not from Nth) we should expand time range and request N additional
// points outside left side of range. We can't do that, so this trick is used for pretty view of first N points.
// We calculate AVG for first N points, but then start from 2nd point, not from Nth. In general, it means we
// assume that previous N values (0-N, 0-(N-1), ..., 0-1) have the same average value as a first N values.
ema[0] = TimePoint{Time: ts[0].Time, Value: &windowAvg}
emaPrev = windowAvg
n = 1
}
} else {
// Use predefined a and start from 1st point (use it as initial EMA value)
a = an
n = 1
}
for i := n; i < ts.Len(); i++ {
point := ts[i]
if point.Value != nil {
emaCurrent = a*(*point.Value) + (1-a)*emaPrev
emaPrev = emaCurrent
value := emaCurrent
ema = append(ema, TimePoint{Time: point.Time, Value: &value})
} else {
ema = append(ema, TimePoint{Time: point.Time, Value: nil})
}
}
return ema
}